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FOREWORD

This is the third of three volumes of the final report prepared by the Research
Triangle Institute, Durham, North Carolina under NASA contract NASw-905, "Development
of Reliability Methodology for Systems Engineering". This work was administered
under the technical direction of the 0ffice of Reliability and Quality Assurance,
NASA Headquarters with Mr. John E. Condon, Director, as technical contract monitor.

The work described in this report was conducted by M. R. Leadbetter and J. D.
Cryer. The emphasis of this work has been to develop mathematical methods for the
analysis of stochastic data, from a reliability standpoint. The methodology thus
developed extends the theory available from work done under a previous NASA contract
(NASw-334). While the results obtained are theoretical in nature, the requirements
for practical application have been kept constantly in mind. In particular, simple
asymptotic approximations have been given for certain important results which would
otherwise lead to difficult computational problems.

The contents of this report have also been submitted as Mr. Cryer's disserta-
tion in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Statistics at the University of North Carolina.
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PREFACE

The objective of this contract was to develop reliability methodology which
relates to various techniques which can be applied in designing reliabile systems and
to extend the methodology by the development and demonstration of new techniques. It
was important to have available a system on which to test and demonstrate the results.
A complex static inverter was chosen for this purpose and served this role well.

The three major areas of effort in the program are defined by the titles of the

final report volumes listed as follows:

Vol. I. Methodology: Analysis Techniques and Procedures

Vol. 1II. Application: Design Reliability Analysis of a 250 Volt-Ampere
Static Inverter

Vol. III. Theoretical Investigations: An Approach to a Class of Reliability

Problems

The purpose of Vol. I is to describe the mathematical techniques which are
available for performing the reliability analysis of equipment life and performance.
Appropriate technique selection, coupled with proper coordination of efforts during
design, are essential for engineering reliability into equipment. Vol. II considers
the practical application of reliability analysis to circuit design and demonstrates
improvements in the identification and solution of problems using the techniques
described in Vol. I. This employs the static inverter as an example. Vol. III
describes fundamental studies in stochastic processes related to reliability.

Other technical reports issued under this contract effort are as follows:

1. "On Certain Functionals of Normal Processes," Technical Report No. 1,
September 1964.

2. "Functional Description of a 250 Volt-Ampere Static Inverter," Technical
Report No. 2, December 1964.

3. "The Variance of the Number of Zeros of Stationary Normal Processes,"
Technical Report No. 3, March 1965.

4. "Problems in Probability," Technical Report No. 4, October 1965.

5. "Reliability Analysis of Timing Channel Circuits in a Static Inverter,"
Technical Report No. 5, December 1965.

6. "Reliability Analysis of Timing Channel Circuits in a Static Inverter,"
Technical Report No. 6, January 1966.



ABSTRACT

This report is concerned with certain random quantities derived from a con-
tinuous time stochastic process X(t). Particular interest is centered on the
number of crossings of certain barriers by the sample functions of X(t) and other
closely ralated random variables. Such quantities are of interest in reliability
theory both in their own right as performance measures and because they can pro-
vide bounds on certain probabilities.

The basic definitions and fundamental relations for crossings are given
first. It is noted that the actual distribution of the number of crossings is
obtainable in only very special cases. 1In particular, this distribution is de-
rived when the process is the so-called random cosine wave. In view of the
difficulty in deriving the distributions involved, certain moments are considered.
Assuming that X(t) is a non-stationary normal process, a formula for the mean
number of crossings of a (continuously differentiable) curve is obtained under
essentially minimal conditions. An expression for the second moment of the num-
ber of upcrossings of a level by a stationary normal process is derived next.

It is shown by an example that the sufficient conditions given for the finiteness
of this moment are also very close to being necessary. Incidental results in
this connection include a formula for the covariance between the number of up-
crossings in one interval and the number in another interval.

Also considered are certain random variables related to excursions outside
of given barriers. The first two moments of these variables are given and it is
noted that Chebyshev-type bounds on probabilities of interest can be obtained
from these moments. Some discussion is devoted to crossings and excursions

outside two-sided barriers.
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CHAPTER 1

INTRODUCTION

We shall be concerned throughout with a stochastic process X(t) having a
continuous time parameter t. In particular we are interested in the number of
crossings of certain barriers by the sample functions of X(t) and in other closely
related random variables. The interest in crossing problems came, initially,
from electrical engineering applications, especially in radio propagation and
communications theory. For example, the statistical properties of the number of
zero crossings per unit time of a voltage waveform provides knowledge necessary
for the design of certain FM signal detectors. Studies of fatigue in structures,
analysis of flight test data and guidance systems, and investigations into speech
waveforms provide further applications of interest.

Certain aspects of reliability theory may also be approached through cross-
ing problems. When one is concerned with the quality of performance of a complex
physical mechanism subject to random disturbing influences, it is sometimes con-
venient to consider "performance measures" which are based on the characteristics
of a stochastic process associated with the system. For example suppose X(t) de-
notes an output of the system and for good performance it is desirable that X(t)
remain below the level a during the operational period of the system, t € (O,to).
Then we would like to evaluate P{X(t) < a, t ¢ (O,to)}. In terms of crossings
this is the same as P{X(0) < a and X(t) has no crossiﬁgs of a for t ¢ (O,to)}.
The mean number of crossings of the level a during (O,to) would also be of iﬁter-
est as a performance measure; the smaller the mean the better the performance

from this point of view.




It is also easy to see that crossings are closely related to certain first-

passage problems. Let Ta denote the first time after t = 0 at which X(t) = a.

For processes with continuous sample functions Ta is a random variable and a first-

passage problem consists of finding the distribution of Ta' We have the relation
P(Ta,> t} = P{no crossing of a for t ¢ (0,T)} .

First-passage problems are extremely difficult in general and even for
stationary normal processes have only been solved for a few special cases. (See
Slepian (1962) and Mehr and McFadden (1965) and the references contained there-

in.) We may however note also that

P{T > 17} = P{ max X(t) < a} + P{ min X(t) > a}
a (0,7) : (0,7) »

The asymptotic distribution of max X(t) as T —> o has recently been obtained
(0,7

by Cramér (1965, 1966) for a stationary normal process under weak conditions.

Similarly in almost all cases the distribution of the number of crossings is
not known. Thus our results will mainly be concerned with moments. However the
moments are useful in their own right and indeed can be used to provide bounds and
approximations to the probabilities discussed above.

In Chapter II the basic definitions are given and some of the fundamental re-
lations derived. An approximation to a process X(t) is described and shown to be
useful in obtaining results concerning crossings. In the last section of Chapter II
the actual distribution of the number of upcrossings is derived for the very spec-
ial case of a "random cosine wave."

Chapter III is concerned with the mean number of curve crossings by a general
non-stationary normal process. A formula for the mean is given and corresponding
results for upcrossings and downcrossings are noted. Conditions sufficient for
the mean number of crossings to be infinite are obtained and it is shown that the
conditions under which the formula for the mean is obtained are close to being

necessary. Some examples are given.



The second moment of the number of upcrossings of a level by a statiomary
normal process is found in Chapter IV. Conditions are given such that this mom-
ent is finite and it is shown by example that a very slight relaxation of these
conditions leads to an infinite second moment. Hence again the sufficient con-
ditions for finiteness are almost the necessary conditions. In 4.3 the variance
of the total number of crossings is obtained from the corresponding result for
upcrossings. Next the covariance between the number of upcrossings in one inter-
val and the number in another interval is found. The remaining two sectioms give
the asymptotic form for the variance of the number of crossings in an interval of
length T as T —> oo and some numerical results which indicate that in many cases
of practical interest the asymptotic form is approached rather rapidly.

Chapter V deals with certain random variabes related to excursions outside
of a curve a(t). The mean and variance of the variables are derived and it is
shown how they can give Chebyshev-type bounds on probabilities of interest. Some
asymptotic formulae and numerical calculations end this chapter.

In Chapter VI we indicate how the results of the earlier chapters can be ex-
tended to two-sided barriers. That is, we consider the total number of crossings
of the two levels a and b and excursions outside such boundaries.

Finally, in most cases the conditions assumed are sufficient to ensure the
existence of a separable version of the process under consideration. However, in

any case, separability will be assumed throughout without further comment.



CHAPTER II

FUNDAMENTALS

2.1 Crossings

In this and the following two chapters we will discuss certain properties of
"crossings" of levels or curves by the sample functions of a stochastic process.
Although the meanings of such works as "crossings" or "upcrossings" are intuitively
clear they must of course be defined precisely wiﬁhin é mathematical framework. 1In
particular it might seem reasonable to define an upcrossing in terms of the process
value and the sign of its derivative. However, to obtain results under minimal con-
ditions it is sometimes necessary to avoid assuming that the process has (with
probability one) a sample derivative. Thus we make the following definitions which
include those given by Volkonski (1960), Ylvisaker (1965) and Leadbetter (1966a).

Suppose x(t) is a (non-random) continuous real function for t e [0,1] with the
property that x(k2-n) # 0 for k = 0,1,...,2n,n = 1,2,... Then toe[O,l] is said to
be a zero crossing of x(t) if for every € > 0O there are points t)st, in [0,1] such

that to—e < t1 < to S'tz S'to + € and x(tl)x(tz) < 0. More generally, if a(t) is

a continuous function on [0,1] and a(kZ'n) # x(kz-n), x(t) is said to have a cross-

ing of a(t) at t, if x(t)-a(t) has a zero crossing at to. Note that though we do
not assume x(to) = 0 at a zero crossing to’ nevertheless this follows from the
continuity of the function x(t). For if x(to) # 0 it follows that x(t) is strictly
positive or else strictly negative in some neighborhood of to and hence cannot
have a zero crossing there.

Clearly as our definition stands it does not include points of tangency

(i.e. points vhere x(to) = 0 that are not crossings) to the axis (or the curve



a(t)) as zero crossings. However, the definition is the most convenient one and
in many applications of crossings to random functions it can be shown that the set
of sample functions which are somewhere tangential to the axis (or curve) has

zero probability of occurring. Hence quantities such as moments of the number

of crossings are also the moments of the number of times the function (process)
actually assumes the value. More will be said of this as needed.

It will also be convenient to define two special kinds of crossings. The
point to is called an upcrossing of x(t) if there exists & > 0 such that x(t) < 0
when tdstst and x(t) > 0 when sttt 4 8. Similarly the function
x(t) has a downcrossing at t if there exists & > 0 such that x(t) > 0 for
to—Bgtgtoandx(t)gofortog_tg_to+6.

The following rather intuitive lemmas will be needed later. Similar results

are used (without full proof) by Leadbetter (1966a). (see also Ylvisaker (1965)).

and t.,.

Lemma 2.1.1: 1If x(tl).x(tz) < 0 then x(t) has a zero crossing between t1 2

Proof: Suppose this is not true; then every point of the interval [0,1] lies in
an open interval in which x(t) has constant sign. The collection of all such
intervals is an open covering of [0,1]. By the Heine-Borel theorem there exists
a finite subcover. On overlapping intervals x(t) must have the same sign and thus,
by finite induction, x(tl) and x(tz) must have the same sign - a contradiction.

Let N, Nu, Nd denote, respectively, the number of crossings, upcrossings,
and downcrossings of x(t) for t €[0,1]. 1In general there may be crossings which
are neither upcrossings nor downcrossings - consider x(t) = (t-to)sin(ll(t-to))
with toe[O,l] and not of the form k2™ ". If, however, N is finite we have the

following result.

Lemma 2.1.2: If N< oo then N = N% + Nd'



Proof: Let to be a zero crossing of x(t). Since N < oo there is an interval
(to—e, td+€) which contains no other crossings. The function x(t) cannot change
sign in (to-e, to) since if it did there would, by Lemma 2.1.1, be another crossing
in (to-e, to)' Similarly x(t) has constant sign on (to, td+€) and thus to is

either an upcrossing or a downcrossing.

Lemma 2.1.3: If N< oo and x(tl) <0< x(tz) where t. < t,, then x(t) has an

1 2’

upcrossing between t1 and t2.

1 and t2' Let to

be the first such crossing. By Lemma 2.1.2 to is either an upcrossing or a

Proof: By Lemma 2.1.1 at least one crossing occurs between t

downcrossing. Suppose it is a downcrossing. Then there is a point between t1
and to where x(t) is strictly positive and hence, by Lemma 2.1.1 there is another

crossing before to - a contradiction. Thus t, is an upcrossing.

Lemma 2.1.4: If N< o, then Nu - Nd assumes only the values 0,% 1.

+1  iff x(0) < 0 < x(1)
N - N, = -1 iff x%(0) > 0> x(1)

0 otherwise

Proof: Using Lemma 2.1.1 again we see that there must be a crossing between any
two upcrossings (downcrossings). Thus the upcrossings and downcrossings alternate

and the lemma easily follows from this fact.

2.2 The Piecewise Linear Approximation.

For any t €[0,1] and any positive integer n, we let k = kn(t) denote the
unique integer such that k2-n'§_t < (k+1) 2™, Then for each n we define yn(t),

the piecewise linear approximation to x(t), as the function

(2.2.1) y (t) = x(k27™) + 2% (e-k27) [x ()27 - x(k27H ],



that is, yn(t) = x(t) for t of the form k2" (k = 0,1,...2“) and yn(t) is linear
between such points.
Let Nn denote the number of zero crossings by yn(t) for t €[0,1]. Then the

following useful lemmas can be obtained.

Lemma 2.2.1: For each n we have N < N < N.
—_— n = ntl

Proof: 1If yn(t) has a zero crossing at t then there is an integer k such that
T <t < (127" and x(k27")-x((#1)27") < 0. Thus by Lemma 2.1.1 x(t) has
a zero crossing in (k2 %, (k+1)2° ") and thus N < N. Further x((2k+1)2~n-1) is
either positive or negative so that yn+1(t) also has a zero crossing in

-n -n
k27, (127, f.e. N <N .

Lemma 2.2.2: an N asn—> o0.

Proof: If N is finite let tl,tz,...,tN be the zero crossings of x(t). There

is a set of N disjoint intervals each containing one of the t; - Let a < ti <b
be a typical such interval. By the definition of zero crossing there exist two
points Ty Ty such that a < T <t < T, < b and x(Tl)'x(Tz) < 0. Since x(-) is
continuous there are neighborhoods (c,d), (e,f) of Tys Ty such that x(-) is of
contstant sign on each one. Now the set of points {k2 ": k=0,1,...2n, n=1,2,...}

is dense in [0,1] and thus there are integers n, k., k, with 0 < k. L,k S_Zn

1 2 1°72

such that c < k.2 "< d and e < k,2 " < f. Therefore y (k,2™ ™y (k,2™™ < 0
1 2 n 1 n 2

and yn(t) has a zero crossing in (a,b) also. Repeating this argument for each

ti vields 1lim Nn = N.
>0

Now suppose N is infinite. Let M be an arbitrary positve integer and let
tl’ t2,..., tM be zero crossings of x(t). The arguments in the first part of
the proof show immediately that Nnjg M as soon as n is sufficiently large. Thus

Nn tends to infinity as required.



Let us now consider crossings by a stochastic process {X(t): 0 < t < 1}. 1In

order that crossings be defined we can here make the minimal assumptions that X(t)
has, with probability one, continuous sample functions and has continuous one-
dimensional distributions. Under these assumptions we have that, with probability
one, X(t) is a continuous function and X(kZ-n) # 0 for k = 0,1,...2n, n=1,2.,,
and therefore the previous lemmas will apply.

To show that N, the number of zero crossings by X(t), is indeed a random
variable we need to temporarily write X(t) as X(t,w) to explicitly show the de-
pendance of X(t) on the "sample point" ®. That is, our basic probability space

is, say, (2,%,P) and w € . For each fixed t, X(t,w) is a measurable function of

®. Now Nn = Nh(w) can be written as
Nn(w) = '2 Mj(aﬂ

1 if X(327%,0)-X((#D2he) < 0,

M, (w)
J 0 othervise .

But

]

{w: MJ. (@ =1} = {o X(327%,0) <0< X((#+1)27",a}

ufw: X(GG270) > 0> X((+D2 %, w)

€T

since X(t,») is a random variable for each t. Thus, clearly Nn(wb is a random
variable for each n. Since we have assumed that, with probability one, the sample
functions are continuous, there is by Lemma 2.2.2 a measurable set A of ¥ such that
Nn(u» —> N = N(®w) for w € A and P(A) = 1. For w € 2-A let us define N(w) = 0.
Then N(w) as the probability one limit of a sequence of random variables is clearly
a random variable itself. We may note that up until now N has only been defined

with probability one.




We note here also that we should more properly talk about crossings by the

sample functions or realizations of the process X(t) although we shall usually

use the less precise phrase "crossings by X(t)".

2.3 A Special Case - The Random Cosine Wave.

In almost no situation is it possible to actually obtain the distribution

of the number of crossings or upcrossings. Since such results are possible for

the so-called random cosine wave the simple ad hoc derivation will be given

here.

Suppose we have a stochastic process X(t) which can be expressed as
(2.3.1) X(t) = A cos(wt+8)

where ® is a fixed constant and A (the amplitude) and 8 (the phase) are in-
dependent random variables A having a Rayleigh distribution, i.e.
P(A> a} = exp(-aZ/Z) for a> 0, and © being uniformly distributed on (0, 2x).
It is well-known that in this case X(t) is a stationary normal process with
zero mean and covariance function r(t) = coswt. The spectral distribution
function has a single jump at the frequency w. Thus the process and results to
be obtained can be considered as approximations to the corresponding results for
a stationary normal process with a very "narrow band" spectrum centered at w.
Let Nu(T) denote the number of upcrossings of the constant level a by X(t)
in the time interval (0,T). From the nature of the process, the upcrossings
(if any) always occur at points 2x/w apart. It is convenient to express T as
T = 2nn/w+ 26n/w where 0 < < 1 and nis a non-ﬁegative integer. In the
interval (0, 2nn/w) there will either be n upcrossings (if A > a) or none at all.
Hence we need only consider in detail the interval (2nn/w,T) or, by stationarity,

we can consider the interval (0,26n/w). Consider a typical sample function of

X(t) as in Figure 2.3.1.




UPCROSSING

pon e oem e e eEs e e s o e s e e e — e s cums e e

FF- T -—ik\ T
(2n-8) /o

Figure 2.3.1

There can be at most one upcrossing in (0,20n/w) and this occurs only if A> a
and 7 < (21-8)/w < 26n/w + T where T, as in Figure 2.3.1, is the distance from

an upcrossing to the next maximum of X(t). But for any 7,

P{A> a and 7 < (2n-8) /0 < 26n/w + T} P{A > a}.P{0 < 8 < 26n}

Gatp(-aZIZ).

Thus we have the complete result

Theorem 2.3.1: If X(t) is a random cosine wave as defined above and Nu(T) is

the number of upcrossings of the level a in the interval (0,T), then

2
P(N(T) = 0} = 1- e2 /2 ,
- 2/2
P{NU(T) =n} = (1-8)e™? s
-a%/2
B(N (T) = o+1} = be a s

where n and 6 are defined by T = 2nn/w + 26n/w, n being a non-negative integer

and 0 < 8 < 1.

T -a2/2
Corollary 2.3.1: 8{Nu(T)} = 3 e

[n2 4+ (2n+1)6 - (n-!—e)2 e

2 2
Var{Nu(T)} -a /2] e 2 /2 .

For upcrossings of the zero level, i.e. a = 0, the variance reduces to 6(1-6).

10



CHAPTER III1
THE MEAN NUMBER OF CURVE CROSSINGS

3.1 The Stationary Case.

The problem of obtaining the mean number of zeros or, more generally, the
mean number of crossings of a level a by a stationary normal process has been
considered by a number of authors beginming with the notable, if somewhat heuristic,
work of Rice (1944). At about the same time Kac (1943) was able to obtain, by a
mathematically rigorous method, the mean number of real roots of a polynomial with
normally distributed coefficients. More recently these results have been extended
to more general normal processes by Ivanov (1960), Bulinskaya (1961), Ito (1964)
and Ylvisaker (1965). The two latter authors in fact give the complete solution
to this problem. Specifically, if X(t) is a zero mean, stationary normal process
with continuous sample functions and N is the number of crossings of the level a

by X(t) for te (0,1), then

(3.1.1) e = 1[0y /x()1F expl-a’/(2x(0N)] ,
. dz
where r(T) is the covariance function of X(t) and r"(1) = —3 r(1). The right-
dt

hand-side is to be interpreted as +o0 if the second derivative of r(t) at 7 = 0
does not exist. If the sample functions are not continuous with probability one,
then the work of Belayev (1961) shows that &[N} = +oo and hence all possible
situations have been covered for level crossinés by stationary normal processes.
Under the same conditions given above, the mean number of upcrossings or down-
crossings is given by 3€(N}.

Extending the problem in two directions, Leadbetter (1965) considered the
situation where the fixed level a is replaced by a curve a(t) and the normal process

is either stationary or is the integral of a statiomary process - a particular non-
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stationary case. Methods similar to those of Bulinskaya were used to obtain &{N}
under rather weak sufficient conditions.

The first main result to be obtained here (Theorem 3.3.1) is also contained
in a paper of Leadbetter and Cryer (1965a). It should be noted that the normality
assumption is used in dealing with the joint distribution of X(t) and X'(t) (the
quadratic mean derivative of X(t). That the results can be generalized to non-
normal cases has recently been shown by Leadbetter (1966a) where certain conditions

on such joint distributions are assumed.

3.2 The Non-stationary Case.

Suppose now we consider a general non-stationary normal process X(t) with
mean E{X(t)} = m(t) and covariance cov[X(t),X(s)] = I'(t,s). Within the framework
of non-stationary processes, curve crossings may easily be reduced to zero crossings
since the number of crossings of the curve a(t) by X(t) is the same as the number
of zero crossings by the non-stationary process X(t)-a(t). We note further that
to obtain the mean number of zero crossings by X(t) for te (a,b) it is sufficient
to obtain the result for t e (0,1). To see this define a new process {Y(t):te(0,1)}

by Y(t) = X(t(b-a)). Then
e{Y(t)} = m(t(b-a)) and cov[¥(t),¥(s)] = TI(t(b-a),s(b-a))

so continuity, differentiability, etc. of the mean and covariance of X(t) are

equivalent to the corresponding properties of Y(t). Hence as long as our results
are in terms of m, I' and their derivatives, etc., there is no loss of generality
in considering the problem of obtaining the mean number of zero crossings by X(t)

for t € (0,1). The main result can now be stated and proved.

3.3 The Mean Number of Crossings.

We assume throughout this section that {X(t):te[0,1]} is a normal process with
E{X(t)} = m(t) and cov[X(t),X(s)] = r(t,s). Let X'(t) denote the quadratic mean

derivative of X(t).
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Theorem 3.3.1: Suppose that m(t) has a continuous derivative m'(t) for te[0,1],
that I'(t,s) has a mixed second partial derivative which is continuous at all
diagonal points (t,t), te[0,1], and that the joint distribution of X(t), X'(t)

is non-singular for each te[0,1]. Then

1
G.3.1) e = EE11.26)7% o B (20 [n(e)] + n(t) [20(n(t))-1]}dt,
. o]

o(t) o(t)
wherxe
2 2 3% 3r
o7(t) = TI(t,t), Y (t) = S§Szle=er P(B) = Fgle=r /[0(E)7(B)],
- i)  p(Om(e),.. 2 -3

T](t) = [ ')’(t) O'(t) ][1 P (t)] ’

- x
o(x) = (21) 2 *'%, and o(x) = [ ¢(u)du.

-

We note that X'(t) exists by the assumptions on I'(t,s) and further
02 = var[X(t)], 72 = var[X"(t)], and p = cov[X(t),X'(t)] .

We further note that, under the conditions of the theorem, the work of
Leadbetter (1966a) implies that the probability is zero that X(t) will become tan-
gential to the zero level somewhere in 0 < t < 1 and thus the mean number of times
X(t) actually assumes the value zero is also given by the right-hand-side of (3.3.1).

The proof of this theorem will be given by a sequence of lemmas.

Let {Yn(t): te[0,1]} be the piecewise linear process defined in (2.2) which
approximates X(t) and let Nn denote the number of zero crossings by Yn(t). By
the Second Order Calculus Theorem of Lozve (1960, p. 520) we know that, with
probability one, the sample functions of X(t) are continuous functions and further
X(k2-n) # 0, for k=0,1,...2n. Hence we may apply Lemma 2.2.2 and the monotone

convergence theorem to obtain

Lemma 3.3.1: S{Nn} —> &[N} as n—> m.
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To evaluate E{Nn] we use a sequence of functions which, speaking loosely,
approach a "Dirac delta function." Specifically, a sequence {Sn(x)] of non-

negative integrable functions is called a delta-function sequence if

®
i) S Sn(x)dx = 1 for each n
-0

and for any € > 0 we have
€
(ii) lim [ B (x)& = 1.
nr>w -€

Let Y;(t) denote the derivative of Yn(t) at points not of the form

-n

k2 7, k=0,1,...2n, the right hand derivative at 0,2.n,...,(2n-1)2-n and the left

hand derivative at t = 1. Then for any delta-function sequence {Bv(x)} we have

Lemma 3.3.2: With probability omne

1
N = limw£ Bv[Yn(t)]le'l(t)ldt
and 1
' n
cj,' sv[Yn(t)]]Yn(t)]dt < 2.

Proof: Write o = k2_n, Yn(t) = A.k + Bkt for teﬂdk,ok+1) and Bk = Yn(ok)' Then

%1 %1
by J 8 [A4Bt] B, |de

k=0 ak

1
£ 5, (¥ _(t)] IYI;(t) |dt

(3.3.2) Py Pl
= =z |f 5 (x)dx|
k=0 B, v

With probability one, Bk is not zero for any k=0,1,...,2n. From the assumed delta-
function properties it follows that if Bk and Bk+1 have the same sign, the corre-
sponding integral tends to zero as v —> . If Bk and Bk+1 have opposite signs
this integral converges to + 1. Thus if the interval (ak,ak+1) contains a zero

of Yh(t) the corresponding term in the sum tends to 1 and otherwise it tends to
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zero. Hence the first part of the lemma is proved. The second part follows easily
1
from (3.3.2) since each term in the sum is dominated by [ 5v(x)dx = 1. Hence the
o
lemma follows.

The results of this lemma enable us to apply dominated convergence and Fubini's

Theorem for positive functions to obtain

1
m [ & [Y (£)][Y2(c) Jat

&{ Nn]
. >0 0

(3.3.3)

1 o0 o
im [ f [ |wls (v)pn(v,w)dvdwdt ,
v—>mw 0 =00 -00 v

where pn(v,w) is the bivariate normal density function for Yn(t),Y;(t). That is

p (v,w) = (209 expl-[C(v-m) - 2B(v-0) (w-B) + ACw-8D)1/(2D))
in which
a=o(t) = S[Yn(t)} R B=8(t) = E{Yﬁ(t”
A= An(t) = Var[Yn(t)} , C = Cn(t) = Var{Y;(t)}
B=B(t) = Cov[Y (t),Y ()], and D =D (t) = Ac-82 .

We note that for any probability density function f(x), we may obtain a delta-

function sequence {Sv(x)} by defining Sv(x) = yf(yx). In particular if we take

2
the normal density f(x) = (Zﬂ)-% e X /2 we obtain from (3.3.3) after a simple

change of variable
1 o oo _‘72/2

(3.3.4) &N} = 1lim (zaz)'AE I [ [ e [w|P_(v/v,w)dvdwdt.
n n
v—>m o =00 -00

To simplify this expression and obtain its limit as n —> 00 we need the

following limits.
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Lemma 3.3.3: The following are uniform limits in 0 t <1 as n—> w:

1) a (t) —> m(t), (i1) g () —> m'(t), (1ii) A (t) —> I(t,t),

(iv) Bn(t) —_ r(,l(t,t), and (v) Cn(t) —_ rll(t,t)

2
r(t,s _ Or(t,s
Tyt = SO e rye,e - T

That is, the moments and cross-moments of Yn(t), Y;(t) converge uniformly to

where

the corresponding moments of X(t), X'(t).

Proof: For notational convenience let us write in = kn(t:)Z-n and jn = (kn(t)+1)2_n,
where as always kn(t) is the unique integer such that ku(t)Z-n <t< (kn(t)+1)2-n.
Thus, as n —> o, in and jn both tend to t uniformly.

Now by the definition of the Yn(t) process (equation 2.2.1) we have
. n . .
a(t) = m(i)+2 (t-i ) [m(5 )-m(i )] .

By the mean value theorem there is a number ln, 0< kn < 2-n’ such that

m(j ) - m(i) = 2" m'(i ) .
Thus
le(e) -m(e)| < ImE) -me)] + |€ -1 ||m' (1)
< () -me)| + 27k,
where K = max Im'(t)] < o0, Hence, by the uniform continuity of m(t), the

te[0,1]

uniform limit (i) is obtained.

Also by definition
n .
B.(t) = 2°[m(1) - m()],
and thus

|By(e) - m'(0)] < fm? (£ - m' (L )] .
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Thus the uniform continuity of m®(t) and the uniform convergence of in +2 tot
yields the limit (ii).

Again from the definition of Yn(t) we obtain

[}

A (D) = 2P -07 e, + (1) TGLIY + 2061 (o0 TE 3]

i

P(i,i ) + 2“(t-in)2 [Po(kgoty) + Top(kyoky)]
ol
+ 27 7(t-1 )(§ -t) Ty (352 )

where :i.n < B kn < jn’ using the mean value theorem twice. Now, by their definit-

jons, t -i_< 2 % and j_ - t < 27", Hence
n - n -
. . -N
| (t) - r(e,t)| < IP(e,t) - T i) ‘I + 2|0 e su) + T Gon ) |
-nt+l .
+ 2 ]r01(1n,1n)| .

But 1"01(1:,5) and I‘m(t,s) are bounded for 0 < t, s < 1 and I‘(in,in) — I(t,t)
uniformly. Therefore An(t) —> TI'(t,t) uniformly in 0 < t < 1 and (iii) is proved.

In a similar manner

B.(6) = 2°%([(-6) + (1-6)] P(L,3) - (4,-6) T(i 1) + (£-1 )T ,5))

(2™ -t) + 1] Ty (e ) + 22(e-1 )0 0O ,00) + T (A )]

where 1n< Hos }»n< in

Hence
n+l . .

. - n. . N
since I‘Ol(t,t) = I‘lo(t,t). Using 2 (t 1n) < 1 and the uniform continuity of rOl
we see that (iv) holds.

Finally we have

c(6) = 22°[r(i i) - 20(i,3) + IG5 )] -
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Let ¥(x) = I’(x,jn) - I‘(x,in). Then we can write

c(£) = 2M[¥(G) - ¥ )]

n oy, .
2" ¥ (ln) s in.< kn <J,

n .
2 [rlo(ln’jn) - Plo(lnsln)] ’
I‘110\11’“n) ’ in < Hn < jn :

Thus the uniform continuity of I‘n(t,s) for 0 < t, s < 1 shows that

Cn(t) —_ I‘ll(t,t) uniformly in 0 < t < 1 and the proof of the lemma is completed.
We are now in a position to prove the theorem. Applying Lemma A.2 to the

quadratic form in pn(v,w) we see that the integrand in (3.3.4) is dominated by

2
(erD%)-l]wlexp{-%[v2+(w—ﬁ)2/c]] and converges to (2:1:)-% |w|e-v 12 pn(O,w) as

v —> . From the calculations of Lemma 3.3.3 it is clear that Bn(t) and Cn(t)

are bounded functions of t for any n. By the same lemma
2
D (t) —> Tr(t,t) Iy, (t,t) - Iy, (t,t)

uniformly and this is non-zero by the assumed non-singularity of the joint density
of X(t), X'(t). Thus, at least for sufficiently large n, Dn(t) is bounded away
from zero for 0 < t < 1. Hence, by dominated convergence,

@

1
N = LS lele,(0midwe

at o ® 2 2
= (2n) ~ [ D * [ |w|lexp{-[cd” + 20B(w-B) + A(w-8)“]/(2D)}dwdt .
o -

The change of variables (A/D);E(w-B) + oB/ (AD);E = w! leads to

1 2 00 2
eN} = (2m)7! [ (D¥/aye0 /(28) [ |[w+sle™ 12 guwat
- o] -00 - .

1
- @i (n”/»e“"z’ (28 (4(5) + 5[0(8)-k]} dt
(] R

where § = 5 (£) = (A/D)*(B-0B/A) .
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Now using the limits of Lemma 3.3.3 and bounded convergence the required result
follows.

The mean number of upcrossings or downcrossings of the zero level (or of a

curve) may be obtained in a completely analogous fashion. The results may be

stated as follows.

Theorem 3.3.2: Under the assumptions of Theorem 3.3.1 and with the same notation,

the mean number of upcrossings of the zero level in [0,1] is

1
t 2 3  m(t
(3.3.5) £ UL&%[Lp ®] ¢[04(E))-]{¢[n(t)]+n(t)<btn(t)]}dt .

The mean number of downcrossings is given by

1
G.3.6 1 G- m1F $[HGUs ] - a0 1-sn 1 Tde -

The details required for converting such results to those for curve crossings

may now easily be stated.

Theorem 3.3.3: If a(t) has a continuous derivative for 0 < t < 1, then, under
the same conditions as in Theorem 3.3.1, the mean number of crossings (upcrossings
and downcrossings) of the curve a(t) is given by (3.3.1) ((3.3.5), (3.3.6)) with
m(t) replaced by m(t) - a(t) and m'(t) replaced by m'(t) - a'(t). Further the
mean number of crossings (upcrossings, downcrossings) for t in [a,b] is obtained
by intergrating t over this interval instead of [0,1].

When we are dealing with stationary processes these results simplify in the

following manner.

Corollary 3.3.1: Suppose X(t) is a stationary normal process with zero mean and
covariance function r(t). Let a(t) have a continuous derivative a'(t) for
te[0,T]. Then if [r(1)| < 1 for 7 # O and r"(t) exists at T = 0, then the mean

number of crossings of a(t) for te[0,T] is given by
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T
(3.3.7) ] ela(t)/o 1{20,0[a'(t)/o,] + a*(£)(20[a’(t)/0,]-1)}dt

oo

Q‘H

2
where o> = (0) and o) = -r"(0).
This special case is a result of Leadbetter (1965). Notice that g, and o, are
the only parameters of the process which appear in (3.3.7). Similar results fol-

low for upcrossings and downcrossings.

Corollary 3.3.2: Under the conditions of Corollary 3.3.1, if a(t) is in fact a
constant, a, then the mean number of crossings of a in [0,T] reduces to

2
—;E‘[—r"(O)/I‘(O)]JE e"a /{21'(0)]

, the well known result for this case .

The conditions of Theorem 3.3.1 are, in fact, sufficient for the finiteness
of &{N}. The next theorem shows that a slight relaxation of the conditions leads

to an infinite mean.

Theorem 3.3.3: Suppose all of the conditions of Theorem 3.3.1 hold except that
the second mixed partial derivative of I'(t,s) does not exist at all diagomal

points. Specifically we assume that, as n —> oo,
Y : S . s -
(3.3.8) c,(t) = 27T ,1) - 2I(L i ) + I'(§ »] )]

tends to infinity for t in a set § of positive Lebesgue measure. (in = kn(t)Z-n,

. -n -
i = iﬂ+2 ) Then 6{N} +o0.

Proof: From the proof of Theorem 3.3.1 we can still write

3 1 o0 oo - 2/2
lim 20) 2 [ [ | |wle v pu(V/v,W)dvdwdT

€{Nn}
- yr—>m 0 -00 =00

[\

1 oo
[ ] |wlp_(0,w)dwdT ,
o -0 - %

by Fatou's Lemma.



Explicitly
00

{oolwlpn(o,w)dw

(3.3.10)

by the change of variable w = D

Now An(t) —_

21

x -1 ° 2 2
(2xD%) " [ |w|exp{-[aC+20B(w-B)+A(w-B)“]/(2D)]} dw
-m e .

oo
o lwlexp{-[O?G+ZOB(D%W-5)+A(D%W-B)2]/(2D)]dw

%

wt

r(e,t), B (t) —> I, (t,t), a (t) —> mn(t), B (t) —> m'(t), but

Cn(t) —> 40 for teS. Thus
C C 1 1
-_— = = _—
D ac-8>  a-s’/c ree,e)
E%'——> 0 and ég — 0
D D
oo

Hence from (3.3.10)

/ |w]pn(0,w)dw —> +m as n —> o for teS . Therefore

another application of Fatou's Lemma to (3.3.9) yields EINn] ~—> +m and thus

the theorem follows.

in terms of a given covariance function.

given as follows.

The condition that Cn(t) of (3.3.8) tend to infinity is not very easy to check

A somewhat simpler condition can be

Corollary 3.3.3: Let A(h,t) = h 2[F(t+h,t+h) - 2I(t,t+h) + I(t,t)]. If

A(h,t) —> ® as h —> 0 uniformly for t in some subinterval I of (0,1), then

Cn(t) —> oo as required in the theorem.

The proof is easy since in —> t uniformly in t as n — o0 and jn =

if we take h = 2-n

3.4 Examples

i +h
n

(i) The integrated Wiener process.

Let {W(t):te[0,00)} denote the separable Wiener process and let

() =
(o]

t
[ W(u)du. Since the sample functions of the Wiener process are known to
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be almost surely continuous we can take X(t) as a sample function integral. Now the
Wiener process is defined as a normal process with zero mean and covariance funct-
ion E(W(t)W(s)} = min(t,s). Hence it is easy to show that X(t) has zero mean and
covariance P(t;s) = %E(3t-s) for 0 < s < t; see Parzen (1962), for example. The
derivatives required for Theorem 3.3.1 are readily found to be P01(t,t) = t2/2 and
Pll(t,t) = t. Thus o(t) = (t3/3)%, y(t) = t35 and for t > 0, p(t) = (3/4)%. We
note that the joint distribution of X(t), X'(t) is singular at t = 0, the variances
being zero, but the assumptions of the theorem are satisfied for t in any interval
[a,b] with a > 0. Hence the mean number of zero crossings by the integrated
Wiener process for te[a,b] is given by
b

;3
a ¢t

5
0(0)[20(0)Jdt = 3- log

(1-3/4)*

(ii) Crossings of a "linear ramp" by a stationary process.
Suppose X(t) is a stationary normal process with zero mean and covariance
r(1) satisfying the assumptions of Corollary 3.3.1. The mean number of crossings
of the "linear ramp" a(t) = atbt (b # 0) for t in the interval (0,T) is given by
T

clj—o-{202¢(b/oz) + b[2<15(b/cz)-1]}-£ ¢[(a+bt)/c°]dt

20
= (2 o(b/o,) + [20(b/o,)-11}-{0[(a+bT) /0 ] - o(als )} ,

a result given by Leadbetter (1965).

(iii) Reliability - a numerical example.

As stated is the introductory chapter, in analyzing complex systems
from a reliability point of view it is sometimes convenient to regard some perti-
nent time-dependent output, such as angular error in missile attitude, as a
stochastic process. For good performance we would like to have this process re-
main within certain bounds during the mission time. But perhaps certain time
periods are more critical than others (for example the "lift-off" phase); then the

bounds must account for such periods and must vary with time.
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If we are considering a missile system then a reasonable upper bound for a

zero mean output X(t) which is critical at lift-off would be

- L
a(t) = a T

where a - b/c> 0 and a,b> 0.

If we can reasonably assume that X(t) is a stationary normal process then
M(T), the mean number of crossings of this bound in a mission of length T, can
be computed by means of Corollary 3.3.1. From a performance point-of-view the
smaller M(T) the better the system.

As an example M(T) was computed by numerical integration for particular values
of a,b,c and for a stationary process with parameters Oy Oy Considered as a

function of T, M(T) is graphed in Figure 3.4.1.
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CHAPTER IV

THE VARIANCE OF THE NUMBER OF CROSSINGS

4.1 Introduction.

In the preceding chapter the mean number of crossings of a curve by a non-

stationary normal process was obtained under rather general conditions and it was
noted that, in the stationary case, complete results are available. However re-
sults on the variance of the number of crossings are more scattered and are all
concerned with stationary normal processes. The classical work of Rice (1944)
implicitly contains the formula for the second moment but no conditions for its
validity are given. Similar heuristic methods were employed by Miller and Freund
(1956 ) and Steinberg, et al. (1955) obtained the variance of the number of zero
crossings for a particular stationary normal process. The first derivation for

a somewhat general situation seems to occur in a footnote of a paper by Volkonski
and Rozanov (1961) where it is assumed that the covariance function has a sixth
derivative at the origin. Recently Cramer and Leadbetter (1965) have obtained the
formulae for the factorial moments of the number of upcrossings under the condit-
ion that the process have, with probability one, a continuous sample derivative.
Their work however does not deal with the finiteness of the moments. The main
result we obtain here, Theorem 4.2,1, is essentially that announced in Leadbetter
and Cryer (1965b).

In Section 2, the second moment of the number of upcrossings of the level a
by a stationary normal process will be obtained. The conditions given are suf-
ficient for finiteness of the second moment and, as will be shown by an example,
are in fact very close to the necessary conditions. In Section 3 it is shown how
this result can be used to obtain the corresponding second moment for the total

number of crossings. Section 4 deals with the covariance of the number of
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upcrossings in two intervals., In the remaining sections the asymptotic form of
the variance as the length of the time interval tends to infinity is investigated

and some numerical calculations are presented.

4.2 The Variance.

Throughout the remainder of this chapter we assume that X(t) is a stationary
normal process which has, with probability one, continuous sample functioms. The
time parameter t is contained in an appropriate index set-either [0,1], [0,T],
or [0,00). We assume &{X(t)} = O and denote the (continuous) covariance function

by r(1) = E{X(t) X(t+1)}. The corresponding (integrated) spectrum F(}) satisfies

[s0]
(4.2.1) r(1) = [ cosit dF(Q)
[o]

In considering the number of crossings (or upcrossings) of the level a by a
stationary process we can assume the variance, r(0), is unity since the number of
crossings of a by X(t) is the same as the number of crossings of a/[r(O)]% by
X(t)/[r(O)]%, a process with unit variance. Hence we suppose r(0) = 1 with no
loss of generality.

Let Nu denote the number of upcrossings of the level a by the process X(t)
for t € [0,1] and let -r"(0) = Ay = faak?dF(l). The main result may then be stated
as follows. °
Theorem 4.2.1: Suppose the spectral distribution F(XA) has a continuous component
and that the covariance function r(1) has a second derivative r"(t) which, for all

sufficiently small T, satisfies
(4.2.2) A+ (1) < WD)

where Y(7)/t is integrable over [0,1] and ¥(7) decreases as T decreases to zero.

Then the second moment of Nu ig finite and is given by

(4.2.3) &N} = eN}+ /[ | | xvp, (a,8,%,y)dxdydsdt ,
. o0 o o
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where pT(u,v,x,y) is the four-dimensional normal density for the variables

X(0), X(7), X'(0), X'(7), X'(7) denoting the quadratic mean derivative of X(7).
The statement of the theorem as it stands is convenient for theoretical pur-

poses. From a practical (computational) standpoint, however, the right-hand side

of (4.2.3) may be made somewhat more explicit, especially in the zero level case,

i.e. a=0. Specifically we may write
-2 -3 -1 ‘
(4.2.4) P (u,v,x,5) = (20) |Z]7F exp[-(u,v,x,5) 7 (u,v,x,5)'/2]

where the covariance matrix, Z = Z(7), is given as

[ 1 r(1) 0 r¥(1)

(4.2.5) o= r(T) 1 -rt(1) 0
0 -rt(T) A, -r"(1)

(1) 0 -r" (1) kz

When a=0 Equation (4.2.3) may be evaluated using Lemma A.3 of the Appendix

to yield

+ L

w3l S 02,52 ¥ (1x2 ()2

'Q’INVW

(4.2.6) a{nﬁ} - (1-Acot "la)dr |

where Zij is the cofactor of the ij-th element of £ and A = 34(22 22

33 34) he

dependence of Zij and A on T being suppressed.

The proof of the theorem is quite long and will be obtained from the several
lemmas which follow.

Let Nn denote the number of upcrossings of the level a by the piecewise linear

process Yn(t) as defined in Chapters II and III.

Lemma 4.2.1: If {Sm(x)} is a delta-function sequence (defined in 3.3) and o(x)
is defined as
x ifx>0

o(x) =
0 otherwise |,
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then, with probability ome,

1
No= m&:qﬂj)’ Bm[Yn(t)-a] U[Yr'!(t)]dt .

Proof: Write o = k2-n, Yn(t) = Ak+ Bkt for t € [ak,(!k_'_l) and B.k = Yn(ak) -a.

Then
1 21 %1
[ o [ (t)-a] o[¥](t)]dt £ [ 8 [A+B t-a] o(B)dt

o k=0 Qk

Bree1

z 5m(x)dx

P

where the last summation is over those k such that Bk> 0. From the properties

of the delta-function sequence this converges to Nn as in the proof of Lemma 3.3.2.
Now consider the unit square {(s,t): 0< s, t< 1}. Let n be a fixed pos-

itive integer. If for some integer k, k2™ <8, t< (k-!-l)2_n we say that s and t

are in the same interval. If k2" <s< (k+1)27" <t< (k+2)27" or if

k2™ <t< (k+1)27" <s< (k+2)27" we say that s and t are in adjacent intervals.

If s and t are not in the same interval nor in adjacent intervals we say that they

are in separated intervals and write Sn for the subset where s and t are in sep-

arated intervals. With this notation we have

Lemma 4.2.2: With probability omne

2
N, = N ¢ m1_ix>nco f5nf 5 [Y (t)-a] & [¥ (s)-a] o[¥!(t)] o[¥!(s)]dsdt ,
and
[ [5_[¥ (t)-a] 5_[¥ (s)-a] o[¥ ()] o[¥!(s)]dsdt < 2°° .

S
n
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Proof: Again let o = k2™®. Then from Lemma 4.2.1

) 21 2" faj+1 fai+1 :
N = lim [ Z = 8 [Y (t)-als [Y (s)-alo[¥!(t)]o[¥?(s)]dsdt]
n m—c0 j=0 i=0 a’j o mn mn n n
2%.1 %41 .
= lim = {f 8, [Y (t)-alo[¥!(t)]at}

i
M2 %4 %2
+ mE_:w 2 150 [é 5m[Yn(t)-a]c[Y"‘(t)]dt~£ Sm[Yn(s)-a]o[Yl'l(s)]ds]
i i+1

+ lim [ fSm[Yn(t)-a]Sm[Yn(s)-a]o[Yt'l(t)]G[Yt'l(s)]dsdt .

m>>00 S
n

The first term is Nn as in the proof of Lemmas 3.3.2 and 4.2.1 and hence we

need only show that the second term is zero.

Consider
%+1 %2
) ‘6m[Yn(t) -alo [Yr'n(t) lde- [ Sm[Yn(s) -alo [Yt'l(s)]ds .
% %41

By the construction of the process Yn(t) it is impossible to have an upcrossing
of the level a in each of two adjacent intervals. Therefore at least one of the
above factors tends to zero as m —> oo and hence the entire second term is zero
in the limit.

The last part of the lemma follows as in Lemmas 3.3.2 and 4.2.1.

Using Lemma 4.2.2, the dominated convergence theorem and Fubini's theorem for

positive functions we immediately obtain
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Lemma 4.2.3:
SINi} = &N} + mfifao fs / €5, [Y (t)-als [Y (s)-alo[¥!(t)]o[¥!(s)]}dsdt.

n

To evaluate the second term on the right we need the results of the next two
lemmas.
Let Zn= Zn(t,s) denote the covariance matrix for the variables Yﬁ(t), Yn(s),

Y;(t), Y;(s).

Lemma 4.2.4: For (s,t) € Sn the joint (normal) distribution of Yﬁ(t), Yn(s),
Y;(t), Y;(s) is non-singular for each n and further there is a positive constant

¢ such that lZn(t,s)l > ¢> 0 uniformly for (s,t) ¢ Sn'

Proof: Let i = kn(t), j= kn(s). Then

Y (t) XE2™™ + (-2 [RE+FD2T™) - x(12TH]

2 [X((E+1)2™™ - x(12™)

T (t)

with similar expressions for Yn(s), Y;(s) (replace t by s, i by j). Hence the

vector y' = (Y (t), Y (s), Y'(t), Y!(s)) may be written as a linear transformat-
ion of the vector x' = (X(i2™), X((1+1)2™), X127, X((3+1)2™), viz.
Yy = M x where M is given as

1-2%+1 2"t-1 0 0

M = 0 0 1-2%+5  2%s-j
_on ot 0 0
L 0 0 =20 on
.

Since (s,t) € Sn the integers i, i+l, j, j+1 are all different and thus by
Lemma A.l the joint density of x is non-singular. But the determinant of M is

easily found to be lMl = 22n and therefore the joint distribution of y is always
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non-singular. Further as (s,t) varies over Sn’ the determinant of the covariance
matrix Cov(x) takes on only a finite number of values, all of them strictly pos-
itive. But Cov(y) = M Cov(x) M' and thus [Cov(y)] = 2n |Cov(x) | and the exist-

ence of the constant ¢ is established.
Lemma 4.2.5: As n —> oo the following limits hold uniformly for 0 < s, t < 1.
(i) Cov[¥ (t), Y (8)] — r(t-s) ,

(i) Cov[Y!(t), ¥ ()] —> r'(t-s) ,
(iii) Cov[Yr'l(t), Yr'l(s)] —> -r"(t-s).
Proof: From the definition of Yn(t) we have
Cov(Y (t), Y (s)]
= [(-2"e+1 )(1-2%43 ) + (2%¢-1 )(2%-1 )] r((d_-3 )27
+ (1-z“t+in)(2ns-jn)r((in-jn-1)z'“)+ (1-2ns+jn)(2nt-in)r((in-jn+1)2-n)
where i = k (t) and j_ =k (s).

Expanding the covariance function r(T1) about the point t-s leads to

Cov[Yh(t), Yﬁ(s)] - r(t-s)

2'“[(1-2“t+in)(1-2“s+jn) + (Zns-jn)(Znt-in)][in-jn-Zn(t-s)] r'(6,)
+ 2‘“(1-2“t+1n)(2°s-5n)(1n-jn-1-2“(t-s)) x'(6,)
+ 2'“(1-2“s+jn)(2“t-1n)(1n-jn+1-2“(c-s)) £'(6,) ,

where
-n n -n
0< lt-s-ell <2 |1n-jn-2 (t-8)| < 2-2

(4.2.7) 0 < [t-s-6,] < 2'“|1n-5n-1-2“(c-s)| <2.27"

- n -
0 < [t-8-8,] < 2771 -5 #1-27(t-s) | < 227" .
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By definition of 1 , j_ the quantities |1-2nt+in|, ]1-2ns+jn], [Znt-inl and

|2%-3_| are all bounded by 1 and thus
|Covl¥ (£), ¥ ()] - x(t=s)| < (4]x"(0)| + 2[z*(8,) | + 2]x*(8,) ) 27"

Since r'(7) is uniformly continuous and bounded for 0 < T < 1 the required uniform
limit (i) is obtained.

Again by definition we have
Cov[¥! (1), Y (s)]
= 2MA-2"+j ) [x((i -5 #1)27) - x((1 -3 ) 2]
+ (@s=3 D E(E -3) 27 - x(Ca -3 1) 27)])
Using three term expansions we find
Cov[Y;(t), Yn(s)] - r*(t-s)
-n-1 n - n 2 n 2 4
2 ((1-27s45 D[ -3 #1-27(t-8))" (63) - (1 -5 -27(t-8))" r"(8,)]
+ (Ps-3 )[(_~1 -2%(e-8))? £7(0)) - (1_-1_-1-2"(e-s))? £"(9,) 1}
where the (new) Qi satisfy (4.2.7). Hence
-n-1
[Covl¥i(t), Y (s)] - r*(t-s)| < (BIx"(8) | + 4[r"(8,) | + &4[r"(6,) 2
and since r"(1) is also uniformly continuous and bounded for 0 < 7 < 1 the desired
result (ii) holds.
Finally we have
Covl¥(r), ¥A(e)] = 2°°[2r((1-5 2™ - £(( -1 -D2™ - r((@ -5 #127
Again using three term expansions we obtain
Cov[¥!(t), YI(s)] = -Hr"(el) + 1"(6,)]

where

|2'“(in-jn) - 6,] < 27", lz'“(in-jn) -0, <27,



33

Now by the definition of i and j , (in-jn)z-n —> t-g uniformly in (t,s) as

n —> oo. Therefore 91 and 92

continuity of r", (iii) is proved.

each converge to t-s uniformly and by the uniform

Lemma 4.2.6:

2 o0
(4.2.8) gNy} = gn i+ /S [ I | =xyop (a,a,x,y)dxdydsdt ,

n,t,s
S o o i
n

where pn,t s
3

Y%(t), Y;(s).

(u,v,x%,y) is the four-dimensional normal demsity for Yn(t)’ Yh(s),

Proof: We first note that for (s,t) € Sn we have

e(s_[¥_(t)-al 5_[¥ (s)-a] o[¥!(£)] o[¥!(s)]}

(4.2.9)
00 G 00 ™
= [ T ] J xy Bm(u-a) 8m(V-a) Py s(u,v,x,y)dudvdxdy .
o o0 =00 -00 i
Explicitly
(u,v,x,y) = (2::)-2 |Z [-% exp[-%(u,v,x,y) Z-l(u v,X,¥)t]
Pn’t’s sV, X,¥ n P sV X,y 'n sV, X,y

and by taking, as in Chapter III, bm(x) = m(21r)“;5 exp(-m2x2/2) the right-hand side
of (4.2.9) becomes

l'% 00 c0O @ @

mz(znr)'3 Iz 7= f / xy eXP{-%[mz(u-a)2+m2(v-a)2+(u,v,x,y)2;1(u,v,x,y)']3
o O

dudvdxdy
) 3 3 © @ ®® 2 2 1
= (2n) IZnI [ [ [ | xy exp{-%[u™+v +(a+u/m,a+v/m,x,y)2n (atu/m,at+v/m,x,y)'}
o o =-00-00

dudvdxdy

Now by Lemma 4.2.4 we know that Iznl = IZn(t,s)I is bounded away from zero
uniformly for (s,t) € Sn‘ Further an application of Lemma A.2 shows that
-1 .
exP["%(u’v’XQY) Ztl (u,v,x,y) ]

< exp[-%(x,y) ABI(X:Y)']
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where A§ is the covariance matrix of Y;(t), Y;(s). As a corollary to Lemma 4.2.4,
15 is non-singular for (s,t) e Sn and indeed by Lemma 4.2.5 the elements of ﬁgl
are bounded functions of s and t, the diagonal elements being bounded away from
zero when (s,t) € Sn'

Hence by dominated convergence we obtain

lim [ f 8{6m[Yﬁ(t)-a]5m[Yn(s)-a]c[Y;(t)]U[Ya(s)]]dsdt
m>00 Sn

2 2
(Zn)_l e-%u +3v P

n,t,s(a"'“/msm/m:xa}')

dudvdxdydsdt

® o
= f f f f Xy Pn £ s(aaaax’Y)dXddedt :
E Bt
S o o
n
and thus the result is obtained by an application of Lemma 4.2.3.
In order to obtain the limit of the second term on the right of (4.2.8) we

a

must investigate the behavior of Xﬁ-f T xy Phe s(a,a,x,y)dxdy where X.n is the
o0 b B ]

indicator function of the set Sn’ for t-s = 7 in a neighborhood of zero. This

will be done in several steps.

Lemma 4.2.7: For (s,t) ¢ Sn we have
@ oo
- -1 2 -
4.2.9) [ [ xy P . s(a,a,x,y)dxdy < (2ﬂ|ﬁ&l%) 1{M44|A1‘ l+p1}%-{M33|A1| 1+u§#
o o ) ? } ]

N
h 4

-1
‘i t = At 1
cofactor of the ij-th element of Zn(t,s) and (pl,uz) A2 A1 (a,a)?!.

where Zn(t,s) is partitioned into 2 x 2 submatrices as » M.. denotes the

ij

Proof: Let x' = (x,y), a' = (a,a), p' = (ul,uz) and A= AS-AiAilAz. Then we can
write (cf. the conditional density gf Y;(t), Y;(s) given Yn(t) = Yn(s) = a; see
Anderson (1958), for example.)
exp(-ka 4'2")

2 lAil% 2n lzﬂ%

exp[-¥(x-p) AL zp) 1,

Pp,t,s(2:2:%57)
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where we use the fact that lZnI = |A1| |a .

We notice that for (s,t) € Sn’ Zn(t,s) is positive definite and thus so is
Al' Hence the factor exp(-%a Ai¥g') never exceeds unity.

By application of Schwarz' inequality we find

™ ®

cf’ £ xy pn’t’s(a,a,x,y)dxdy

I

[e o] a
(ZﬂlAlls‘;)‘l {(ZﬂlAlg)-l [ A exv[-’s(z-g)'/&—l(z-&) Jaxdy)®

[ o] [o o]
fn(aAH T f 5 expldaw ' A N xw Jaxdy)®

-00 =00

cax |ty [0 (g 4 Uy + 00%

where A&j denotes the ij~th element of A .

B. B
Now let 2;1 be also partitioned into 2 x 2 submatrices B} BZ Then
2 73
it is well known that A = B;l. Explicitly
[ M3 Mas
By = lznl
M3n Mg
and thus
o[ T T
I CRIN
-M M
43 33
1 Mo M
= (4] ,
M3 My

- -1
i.e, A11 = |A1| 1 M.44 and A22 = IAII M33 which completes the proof.

For notational convenience in the proofs of the next three lemmas we define
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Zn(t,s) =

N w =" >
N oW O =
“ 0O W oo
O W =3 6

u= 2nr_-kn(t) , V= 2ns-kn(s) (kn(t) being defined as in 2.2) and for integer m,
- -n
T r(m2 ).

Let Xn = Xn(t,s) be the indicator function for the set Sn'

- 2 2 .-
Lemma 4.2.8: Xn(t,s)- ]All 1 < [lZT + o(17)] 1 as T = t-s —> 0 and the o-term

is uniform in n.

Proof: We note that for (s,t) € Sn we have It-s] > 2™, This is the only property
\ of Sn which will be used here.
With the notation established above we have lAll = AD - F2 where, by the proof

of Lemma 4.2.5,

A = 1- 2u(1-—u)(1-r1) . D = 1- 2v(1-v)(1-r1) R
. F = [(1-u)(1~v) + uv]r:j + (1-u)v*l:j_1 + (l-v)urj+1 and j = kn(t)-kn(s).
Now T, = 1 - 2-2n-1(l2-\lf) where ¥V = 12 + r"(el), 0< 91 < Z-n, and
| L 1 - }\Zmz 2-211"1 + \me/Z (r=j-1,3,3j+1), where \lfm = [12 + r"(gm)]Z“:Zn m2 with
0<e <m2™,
Thus
AD = (1 - u(l-w)2™2® Q- WH1 - v(1-v)2™2" (2,-¥}

1 - [u(l-w) + v(1-v) 127" -1 + w(l-u)(1-v)2™*" Q-0

By definition 0 < u, v < 1 for all s,t and n. Further V = 2, + r"(el) < ‘1’(61)

2
where Y is the function assumed given in the statement of the theorem. By assump-

-n
tion ¥(7) decreases as T decreases to zero. Thus, for |t| > 2 ,

Iu(l-u) + v(l-v)]2-2n ¥ < const. 12 ‘I’(Gl) < const. 'rz ¥(1)
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and 2-4n(12-\lf)2 < const. 'ra. Hence for [T] > 2™ we have

AD = 1 - [u(l-u) + v(1-v)]2”2" 2, + o()

as T —> 0 where o('r3) is uniform in n.
Now

1

F = 1- [j2 + 2j(u-v) + u+ v -zuv]z'zn' Ay + [(T-u) (1) + uv]ﬂfjlz

+ (1-u)v \lfj_1/2 + (1-v)u "lfj+1/2

For || > 27" we have [##1]27" < 3]1| and thus

1-v|u V¥, < const. 72 P(t.,.) < const. 'rz ¥(31)
j+1 - j+1 -

and similar bounds for the other llrm terms follow. Hence, subject to |t| > 2-—n’

o= 1o (324 2jw) tuty - 2wv]2 0 4 o(72)
; where o('rz) is uniform in n. Therefore
| -1 . 2 -2 2_.-1
) X (£,8) 1417 < [(Gren)” 2 n A, + 0(1)]
= [}»212 + 0(12)]-1 ’ as T —> 0,

2, . . . .
where o(t") is uniform in n as required.

Lemma 4.2.9: Xn(t,s)-M33 < K 'rz ¥(31) + 0(13) R as T —> 0 , where the

o-term is uniform in n and K is a positive constant.

Proof: We have

(4.2.10) My, = C(AD-F?) + E(2FG-AE) - DG

and we consider the three terms separately.

From the proof of Lemma 4.2.8 we immediately obtain

Xn-(AD-Fz) < (j+u-v)2 2-2n )\2 + K 12 ¥(31) + 0(13)

where K is a constant and 0(73) is uniform in n. Further C = 22n+1(1-r1) = }‘2 - ¥

and hence, since Xn-\lf < ¥(1) .
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2n 2

2 + K 12 ¥(31) + 0(13) .

(4.2.11) X .C(AD-F) < (pru-v)’ 272" 2

In considering the second term of (4.2.10), we find

=
f

2n(2v-1)(1-r1) = z'n(v-%)(xz—ﬂf)

so that
B = 2P0y - 270 ulw) (v2) (-0
Also

G = 2n[(1-u)(rj_1-rj) + u(rj-rj+1)]

- -2
= 2,2 P 2gk2ue1) + Gu-1)¥; - u ¥y, + Q)Y ]

and hence for |t| > 27"
_ oD -2n
2FG = 2 [122 (2j+2u-1) + (2u-1)’¢fj + (l-u)llfj_1 - Wj+1]
- [1 - (j2+2j(u-v) +u+v -~ 2uv))‘22-2n-1 + 0(72)]
= 2,27 2p20-1) + (u-1)¥; + (L-ul¥, g - u ¥y, + o],
The second term of (4.2.10) is therefore
2 _-2n -2n 2
(4.2.12) E(2FG-AE) = A, 2 7 (v-) (25+2u-v4y) - 2 V(v-%)“(-22,+¥)

+ (R0 [(2u-1)¥; + (1wl ) - u ¥y ]+ o(e)

where 0(13) is uniform in n subject to [T Z.Z-n .

To evaluate the last term of (4.2.10) we have

D = 1-2v(l-v)(1-r) = 1- v(1-v)2-2n(12-’tlf)

-n
For G we expand rj_1 and rj+1 around j2 7, i.e.
r,, o= r -2%nre27 by, 2P <y <27 g
i-1 i j 1> =°1=

and
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TR 2n-1

- n -n
j+1 j rj r (52) ’ 2

16,270 .

Then

(]
I

2 [(A-u)(ry 1)) + ulryor))]

-rg + 2'“'1[(1-u)r"(§1) - ur'(g,)] .

Now writing r:'j j 2" r"(§3) , 0< §3 <ij 27" (note r'(0) = 0), we have

_ -n . . 4=l -n-1 -n-1
G = 2 l2(3+u—%) -2 oy + (l-u)2 ¢1 -u 2 ¢2
- " s -
where ¢i = kz +r (§i), i=1,2,3.
Hence
(;2 > 2 ~2n 2( +u-35) + 2 (jru-%)[-23¢_ + (L-u)d, - ué,]
z 2,0 ) 1%3 1 2
- j2'2“(1-u)¢1¢3 + j2° = ué,8, - g-2n-1 u(l-u),9,
and therefore
(4.2.13) % D% < -272 320432 - 2720 ) (Gru-b)[-256, + (1-u)é, - uo,]
n - 2 2 3 1 2
n .n=2n -2n-1 3
(1-u)¢1¢3 - j2 u¢3¢2 + 2 u(1-u)¢1¢2 + o(17)

as T —> 0, where 0(73) is again uniform in n. The 0(13) comes from terms like
poén 2 ,-4n,2

i, ¢3 and 2~ j¢1 which are all dominated by a constant multiple of 14
if || > 2"
If we combine (4.2.11-13) as required in M33 we find that the terms not

multiplied by ¢i’ ¥, or Wi’ i.e. the first term in each case, all cancel. The

terms that remain in (4.2.12) include, for example, 2 j V= 2 J[k + r"(el)]

2n 1

and u Wj+1 (3+1) {ki+r"(§j+1)] which, subject to |t| > 2%, are all dom-

inated in absolute value by const, TZ ¥(31). Similarly a typical remaining term
in (4.2.13) is, for example, 2 -2n j2¢ which is also dominated by const. 12 ¥(31).

Hence by combining these results the lemma is proved.
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Lemma 4.2.10: Let v, denote the second element of the vector Ai adj. f&(a,a)*

where adj. Al is the adjoint of Ai' Then there is a positive constant K' such that

Xn(tss)'lvzl < K'l'l‘3l .

Proof: In our notation we have

B R|[D -Fl{a DB-F(B+B) + AH
Ai adj. Ai(a,a)' = = a s
¢ E||-F alla DG-F(E+G) + AE

i.e., = (D-F)G +(A-F)E .

V2
Using the notation of the proofs of the previous two lemmas, we obtain
-2n-1

D-F = —v(1-v)270,-0) + [3° + 25(u-v) + u+ v - 2uv]2 A,

-[(1-u)(1-v) + uv] Wj/Z - (1l-u)v Wj_l/Z (1-v)u Wj+1/2

and

A-F = -u(1-u)2‘2“(12-\V) + 132 + 2§(u-v) + u+ v - 2uv]2 2071 A,

-[(1-v) (1-v) + uv] ¢j/2 - (1-u)v Wj_1/2 (1-v)u Wj+1/2 .

Multiplying by G and E, respectively, we find that the largest of the terms
is dominated by a constant multiple of (IjIZ-n)3 < l27|3, vhen |1] > 2™, Most
of the terms are in fact 0(13). Thus we have established the existance of the

constant K! and the lemma is proved.

Proof of the theorem:

We first note that M33 and MZA of lemma 4.2.7 differ only in that s and t are
interchanged. Thus the result of lemma 4.2.9 is equally valid for M.44 in place
t t
of M53. Similarly the first element of A2 adj. Al(a,a), vy say, differs from vy

only by an interchange of s and t and so Lemma 4,2.10 holds for vy- Hence, using

also Lemmas 4.2.7 and 4.2.8 we have
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o0 2 3,,2
K
(4.2.14) Xn(t,s).f [ xy P, g(@:3:x,y)dxdy < ; w(321)3/2 + [(2)(7 ); 7
o o 2T [lzT +o(1 )] [121 +o(17)]
¥(31)
< K1 T + K2 ?
where K1 and K2 are positive constants.
11 1
Now for any even function f, [ [ £(t-s)dsdt = 2 [ (1-1)£(1)dr. Thus our
oo (o]

assumption that ¥Y(1)/7T be integrable on (0,1) together with inequality (4.2.14)

allow dominated convergence to be applied to (4.2.8) and we obtain

2 11 @ oo
(4.2.15) e{Nu} = e{Nu}+ff lim [ [=xyp

’s(a,a,x,y)dxdydsdt
00 Mm>00 0 O

n,t
(We recall that by Lemma 2.2.2 and monotone convergence we have
gN} — €&{N] and eN?y — E{NZ} )
n u n u’

By Lemma A.2 we have

SRR CRER R T exp[-5(x,7) 8 (x,5)"]

]

(2:r)2|2n1

where A3 is the covariance matrix of Y;(t), Y;(s). For a fixed point (s,t) with
t # s and for all sufficiently large n, Cav[Y;(t), Y;(s)] <5< 1. Hence we may
again appeal to the dominated convergence theorem to obtain

11 o oo

ENY+ S [ [ [ xy lim »p (a,a,x,y)dxdydsdt
u n,t,s
00 0 O n—>m

2
&f Nu]

11 ® o

eNY+ [ J
00 O

Xy pt_s(a,a,x,y)dxdydsdt

o -

This is the desired result.
We may notice that the assumption on the behavior of 12 + r"(1) was not used

until after Lemma 4.2.6. Further (4.2.8) may be obtained as an inequality
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(by Fatou's lemma) without assuming that F(A) has a continuous component, i.e. if

kz < oo we have

2 00
ENY > eN}+ [ [ [ [ Xy P, ¢, (88X, 7)dxdydsdt .

S o o
n

But now a further application of Fatou's lemma gives

Theorem 4.2.2: If A, < oo, then

2

2 11 o
(4.2.16) E{Nu} > GINu} + [ | [ xy pt_s(a,a,x,y)dxdydsdt .
o0 O o
In fact the restriction RZ < 00 is not really necessary (except to define pT)
since if 12 = oo, then S{Ni} = E{Nu} = oo so that (4.2.16) is satisfied.
Now we can show, by example, that the conditions of Theorem 4.2.1, which are
sufficient for finiteness of S{Ni] are also very close to being necessary. To

this end we assume that we have a covariance function r(T) with the property that

(4.2.17) A, + (1) ~ TI;E%;TT , asT1T—>0,

That this is possible follows from Theorem 1 of Pitman (1960). In particular
-r"(1) is a covariance function with spectrum fluzdF(u) and (4.2.17) will hold if
we choose F(A) such that 1 - FQQ) = ;;E%-E_ fgr all sufficiently large A. Further
from Theorem 5 of Pitman (1960) this choggelof F()) also implies the expansion

XZ 2 12 12
(4.2.18) r(t) = 1 - 7T + log]TT'+ 0(10é17|) , asT—> 0.

Now for zero level crossings, i.e. a = 0,some calculation shows that

2 ]
< [Z55 - Z§4]

® @
[ | xy»p(0,0,x,y)dxdy ~ K —=——77,
o o [1-r°(1)]

where K is a constant (cf. equation 4.2.6). Now using the expansion (4.2,18) we

find
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whereas

1 - tZ(T) ~ kz Tz .

Hence
© o
[ | xy pT(O,O,x,y)dxdy ~ K/(]t|logl|t]) as Tt —>o0 .
o o
It follows that the right side of (4.2.16) is infinite and thus EINi} = m. We

note that A, + r"(1) just fails to satisfy the integrability requirement.

2

4.3 The Variance of the Total Number of Crossings.

In the previous section the formula for the second moment (and hence variance)
of the number of upcrossings of the level a by a stationary normal process was
obtained. Here we shall show how the analogous result for the total number of
crossings (both up and down) may be obtained from the results of Section 2.

Let N denote the total number of crossings of the level a by the process X(t)

for 0 < t < 1. As in Section 2 we assume that &{X(t)] 0 and the covariance r(T)

is such that kz < o0 and 12 + (1) < ¥(t) where ¥(7)V 0 as TV 0 and ¥(1)/71 is
integrable on [0,1]. Further we assume that the (integrated) spectrum F(}) has

a continuous component. Then we can state the following result for the second

moment of N.
Theorem 4.3.1:

2 1l o
(4.3.1) ey = em+f) J | |wlop_(a,a,x,5)dxdy

: o0 -00 -
where pT(u,v,x,y) is the four-dimensional normal density for X(0), X(1), X'(0),
X'(1).
In the zero level case we can use Lemma A.3 to obtain the somewhat more ex-

plicit result

1

(4.3.2) €(N%) + 5 (1-1)(z§3-z§4)"‘[1-r2(¢)]'3’2 (1+ A tan ! A)dr ,
[o]

A



where, as in (4.2.6), the Zij are cofactors of the matrix X defined by (4.2.5)
and A = 234(Z§3-Z§4)-%. This is the formula of Steinberg et al (1955).

The proof of (4.3.1) will, again, be given via several lemmas.

Lemma 4.3.1:
o 1] o @ o

S(NZ] = 22 e -a /Z/ﬂ +2ff7UJ F +f f Ixy Py (a,a,x,y)dsdydsdt
00 0 0 =00 =00

a @
-2 [ [ o[x,y;r(1)]dxdy ,
-® a
where ¢(x,y;p) is the standardized bivariate normal density function with cor-

relation coefficient p.

Proof: We first note that the assumption lz < 00 is sufficient to ensure that

N < oo with probability one and thus, by Lemma 2.1.2, N = N + N where Nd is the

number of downcrossings on [0,1]. Thus
6{N2} = e(NZ} + E{NZ] + 26{N N}
u d ud

By Lemma 2.1.4 we obtain

S(Nu-Nd)z = P{X(0) < a < X(1) or X(1) < a < X(0)}
a @
= 2 [ [ ¢[x,y;r(1)]dxdy .
-0 a

But also

S(Nu-Nd)z = )+ e{uﬁ} - 28(N N}
Hence

2 2 2 a @ )
&N} = ZE{Nﬁ] + ZE{Nd] -2 [ [ e¢[x,y;r(1)]dxdy .

-0 a
(Note that Cov[Nﬁ,Nd] may also be obtained at once from this derivationm).

Now X(t) has a downcrossing of a at to if and only if -X(t) has an upcrossing
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of -a at to. Thus by Theorem 4.2,1

2 11 oo
engd = enJ3+fJ [ [ xyp,__(-a,-a,x,y)dxdydsdt
00 O O

11 o o

S{Nu] + f f f f Xy Pt_s(asa:st)dXddedt
o O -00 ~-00

and since &{N}

ZE{Nu] = ZS{Nd} we obtain the lemma.

Next we need the following result.

Lemma 4.3.2: Let the covariance matrix I be partitioned into 2 x 2 matrices as

Then

™
-
™M
]
=t
—
[+
L
[}

L'_[a]
1+r -a
where the argument of r and r' has been suppressed.

Proof: The proof is by straight-forward calculation once the identification

is made.

Now by considering the xy integration in (4.3.1) in each of the four quadrants
and then using Lemma 4.3.1, we see that the theorem will follow if we can show the

next lemma.
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Lemma 4.3.3:

Y -a2/2 11 © o
Ay e In+ [ [ [ | =y pt_s(a,a,x,y)dxdydsdt
0o -0 -0

a [e o]
= 2 [ [ ox,y;p)dxdy ,
-0 a

where p = r(l).

Proof: As in the proof of Lemma 4.2.7, we write

® exp[-at 2;1 al |R3 l% ® ®
[ ] xyp (a,a,x,y)dxdy = T 5o | [ xy exp[-(x-u) "Ry(x-u) }dx,
-00 -00 2x|21| -0 ~00
where a' = (a,a), x' = (x,y) R-1 =3, -t -1 2, and u = %! -1 a
al=(@a), 27 =y, Ry =5y - % 5 Lyadu=X % a.

The right-hand side may easily be evaluated by considering it as a bivariate

product moment to obtain

expl-a' 3" al

Zulzll%

(0255 51 50, + (5 57 alpe 0z 5 al,)

where subscripts on square brackets indicate the elements of the matrix or vector

to be taken. Thus by Lemma 4.3.2 we have

[¢ o] [0 o]
f f Xy PT(a’a’x:Y)dxdy

=00 -0
(4.3.3)
2
sele O] Grra) - x6en® - g
nw(1l-r")

where r = r(1), r' = r'(7), r'" = r"(1) and 7 = t-s.
Now for any function f(x) whose derivative f'(x) is even and integrable we

have

11 1
[ [ £'(t-s)dsdt = 2 [ (1-1) £'(71)d7
[0 e ] [o]
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and integrating by parts gives

11 1
J ] f'(t-s)dsdt = 2 1lim f(1) + 2 [ £(1)dT .
oo >0 o
2
t -
Noting that the right side of (4.3.3) is just - d_r' exp[-a /(1+r)1]
dv 2.%
2n(1-r7)
we have
11 oo @
I'f [ | =xyp_(a,a,x,y)dxdydsdt
0o 0 -0 00

lim r' exp[-;24(1+r)] _ fl r'(T)exg[-a24(1+r(T))] dr.
>0 2x(l-x) o w{l-r"(1)]

Using the expansion r(71) = 1 - XZTZ/Z + 0(12) it is easy to show that the limit on
3

the right is just -lz e 2 /Z/ﬂ so that the proof of the lemma, and hence the

theorem, will be complete once we obtain

L 2 a
N r'(v) exp[-a”/(l+r()] 4. - I | ¢x,y;p)dxdy .

o 1:[1-1'2(1)]'JE -0 a

Working with the left-hand side we make the substitution r(t) = s which trans-

forms this into

! exp[gZ/(HS)]
n(1-s2)®

Now consider the right-hand side. Cramér (1963) has given the useful relation

0 ® 00 @ p
[ | e@&x,y;p)dxdy = [ eé(x)dx-[ o(y)dy + [ ¢(a,b;s)ds
a b a b o

which is true for amy real a,b and any p satisfying |p| <1.

Hence
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a 00
f f o(x,y;p)dxdy = S [ o(x,y;-p)dxdy
00 a -a a
[00]
- f ¢(x)dxf o)y + [ e‘P['a—/(;*“”
-a p  2n(l-s )

Therefore it remains to show that
1 2 ® 00
(4.3.4) ) 32&3—%%"11@ = 2 [ o(x)dx-/ ¢(y)dy
o n(l-8") -a a

If we write the right-hand side as a double integral and then change to polar

coordinates we find

w© @ n/2 o e-%Rz 3n/4 a/cosf e-%Rz
I [ o) ¢(y)dxdy = [ I 5.  RdRd6 + f 57— RARAO .
-a a o afsin® n/2 a/sind

Carrying out the integration over R and then making the substitutions
2sin26 = 14+s in one place and 2c0329 = 148 in another we are finally led to the
left-hand side of (4.3.4).

Thus the lemma and hence the theorem are proved.

4.4 Covariance of the Number of Upcrossings in Disjoint Intervals.

Let, as before, Nu denote the number of upcrossings of the level a by X(t)
for 0 <t £1 and let Mh denote the same quantity for T - 1 < t < T. Then the
moment S{Nu-Mu] is of interest and we shall now show how it may be derived by
methods completely analogous to those of Section 2. If 1 < T < 2 let Ku be the
number of upcrossings by X(t) for T - 1 <t <1, i.e. on the overlapping interval.

We now state the main result using the notation of Section 2.

Theorem 4.4.1: We assume that F(A) has a continuous component and that A, is

2
finite.

(1) 1f1<T < 2 and there is a function ¥(1) as in Theorem 4.2.1, then
Tl oo

(4.4.1) N M) = e{x Y+ [T [xy P, (a,a,x,y)dxdydsdt .
uu T4 000
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(ii) If T > 2, then

(4.4.2) e{nu-nu} xy pt_s(a,a,x,y)dxdydsdt .

[}
“—
O
0 ‘—
0 -

In both cases the moments are finite.

Proof: The proof will be only sketched since it is similar to that of Section 2.

We first observe that we need only prove (4.4.2) since (4.4.1) follows from
(4.4.2) together with the variance (4.2.3). To see this suppose 1 < T < 2 and let
A, K.u and B denote respectively the number of upcrossings for t in (0, T-1),

(T-1, 1), and (1,T). Then Nu = A+ I(.u and Mu = I(.u + B. Hence

]

2
€{Nu-Mu} &{ (A+Ku) (Ku+B)} = S{Ku} + &(A Ku} + 6{Ku B} + €{A B}

1 1 1 T-1 T 1 T T-1 o o
ery+ (S [ +[ [ +[ [ +] [ 1] J=yp._ . (a,a,%7)
T-1T-1 T-1o 1T-1 1 o o o

dxdydsdt

T 1 o0 o
S{K } + f f f f Xy P (asa’x:Y)dXddedt 3
u t-s
T-1 0 o o

where of course we are using the fact that (4.4.2) holds for any two disjoint
intervals with obvious modifications. Hence we only prove (4.4.2).

Let Nn and M.n denote the number of upcrossings by Yn(t) in (0,1), (T-1, T),
respectively. (Yn(t) is defined on (T-1, T) in the same manner as on (0,1), i.e.
(T-1, T) is divided into 2% equal intervals and then Yh(t) = X(t) at the end
points of the intervals. Between such poin;s, Yﬁ(t) is linear.)

Exactly as in Lemma 4.2.1 we have (with probability one)

T

M= mE:m T{IBH[Yn(t)-a]U[Y:‘(t)]dt

and hence Lemma 4.2.2 becomes

T 1
(4.4.3) NM = nii:w 1‘{1£ bn[Yn(t)-a]bn[Yn(a)-a]c[Yr'l(t)]U[Y:l(s)]dsdt
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where the (s,t) integration may be taken as such since for disjoint intervals s
and t are in "separated intervals" as soon as n satisfies 2-n+1 < T ~ 2. Further
the integral in (4.4.3) is again dominated by 22n so that the analog of Lemma 4.2.3
is

T 1

e{nn-nn} = ml._];goo T{1£ 8{6m[Yn(t)-a]Bm[Yn(s)-a]o[Yr'l(t)]U[Yr"(s)]}dsdt.

Lemma 4.2.5 is still valid for 0 < s <1<T-1<t<Tand Lemma 4.2.4
can be strengthened somewhat to give IZn(s,t)l > C > 0 which holds uniformly for
0<s<1<T-1<t<T.

Therefore we can obtain

e{N .M}
nn

]
—
0
o
0
]

t’s(a,a,x,y)dxdydsdt

as in Lemma 4.2.6.
Now in our present case since s and t are in disjoint intervals we need not
be concerned about the "singularity" of Pn,t,s at s = t and we can proceed to
- dominate pn’t’s(a,a,x,y) by a function independent of n and integrable as required

so that, using dominated convergence,

T 1 oo ao
lim S[NnJM } = lim T J J [ xvp ¢ (a,a,x,y)dxdydsdt
n—>00 n nm>c0 T-10 o o n,t,s

&{ N, -Mu}

T 1 oo o

= [ [ ] xyp _(a,a,x,y)dxdydsdt .
t-s
T-1 o0 o

0 —

Clearly the lower bound analogous to that given in Theorem 4.2.2 is also

valid.
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4.5 Asmptotic Results for VariNngl.

We wish now to consider the limiting behavior of the variance of the number
of crossings of the fixed level a by X(t) for 0 < t < T as T —> oo. For this
purpose we extend our notation slightly and write N(T) for the number of such
crossings to show the dependence on T.

We assume throughout this section that the conditions of Theorem 4.2.1 hold
and we write

23

o
(4.5.1) g(v) = [ [ lxyl pT(a,a,x,y)dxdy -1, e ? /e .
-00 -

T
Noting that [ (1-%)d¢ = T/2 and using Theorem 4.3.1 and Equation (3.1.1) we
o

have
- ) 2 T T
(4.5.2) Var{N(T)} = (XZT/ﬂ) exp(-a“/2) + 21f (l-f) g(t)dT .
o
T
Wow if lim [ (1-%) g(t)dt exists (finitely) then we have Var{N(T)} ~c T
T—>00 O

where ¢ is a constant. If g(71) is (absolutely) integrable on (0,00) then by

dominated convergence

T

®
/ (1-%5 g(t)dr —> [ g(v)dr .
o o

However, integrability of g(t) is not necessary for convergence; e.g.

T
/ (1-%) costdt = l:%QEI - 0.
o

Nevertheless integrability of g(t) seems to be the most convenient condition, and
we will show that it holds under rather mild conditiomns on r(7). First however we

give a result for a very special case.

Theorem 4.5.1: If r(71) = 0 for 7> Ty» then for T Z_To we have

T T

: 2 0o o
(4.5.3) Var(N(m)} = t(af ERCA LD | 9 g(nyard - 2 [ 1g(nddr
2 T ° °
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i.e, the variance is exactly linear in T, for all sufficiently large T.

Proof: By our assumption, for T > Ty (1) = r'(1) = r"(1) = 0. Thus for T in

2 2
this range pT(a,a,x,y) = -(2—!)'—2—— exp[-%(?.a2 + -;f—- + {—)] and
) A 2 2
2

o0 00 )\2 -a2
f |xY| pT(a,a,x,y)dxdy = _2 e
=-00 -00 n

i.e. g(1) = 0. Hence the lemma follows.

We might expect similar results if r(1) —> 0 as 1 —> o or if, say, r(7)

is integrable on (0,0). In order to discuss such questions, some preliminary

lemmas will be needed.

Lemma 4.5.1: For T > 0 we have

0o o 1 9
(4.5.4) [ [ lxyl pT(a,a,x,y)dxdy = o exp[-a”/(1+r)] A(7) I(b,h) ,
- -00
where
2D - (P
A(T) = H)
(1-1‘2)3/2
n 2 [} 2
b=b(r) = & (1-r7) + r(x")
'}»z(l_rz) _(rl)z ’ Ibl <1 s
(4.5.6)
2
h =h(r) = &L L-r K ,
1+r )\2(1-1'2) _ (r,)z
1 © @® 1 2 2
I(b,h) = —=—== [ [ [Gx-h)(3+h)| exp{-———~ (x"+2bxyty")}dxdy,
2rn(1-b")* -0 -00 2(1-b7)

and r = r(1), r' = r'(71), r" = r'"(7) .

Proof: See Rice (1958) or Volkonski and Rozanov (1961). The proof also follows

easily from the first equation in the proof of Lemma 4.2.7.
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Lemma 4.5.2: Suppose F(A) is absolutely continuous with density f(d). If £f(d) is

bounded and 0(1-2) as A —> o then r(1), r'(1) and r"(1) are all square integrable

on (0,m) and all tend to zero as 71T —> w .

Proof: By our assumptions [}‘Zf()\)]2 < const. }\zf(l). Hence since )\2 is finite
}\Zf()\), Af(2) and f(d), the Fourier transforms of r"(r), r'(r) and r(t), respect-
ively, are all square integrable on (0,00). Thus by Parseval's theorem r"(71),
r'(1) and r(7) are all square integrable. Further by the Riemann-Lebesgue lemma
they each tend to zero as required.

The behavior of I(b,h) as b,h —> 0 is now considered.

Lemma 4.5.3: As b,h —> 0 we have

(4.5.7) 1b,h) = 24 o2y + ov?y .
Proof: Let ¢(x,y;p) denote the bivariate normal density with zero means, unit

variances and correlation coefficient p. Then define
00 00
(4.5.8) J(h,k;p) = [ [ (x-k)(y-h) ¢(x,y;p)dxdy .
h k
From Cramér (1946) we have the expansion

03 (3
o(x,y30) = x) o°'(y) ,

where Q(j) denotes the j-th derivative of the normal distribution function. Ex-
tensive use will be made of this expansion in the next chapter and we defer dis-
cussion of such questions as convergence, interchange of summation and integration,
etc. to 5.3. If we substitute the expansion into (4.5.8) and integrate each term

by parts we obtain

ICh,kip) = (6(h)-h[1-0()TH{OC)-k[1-0(I)]} + p[1-0(h)I[1-0CK)]

@

31
+ olemei) + Z S P w P
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From the proof that the sum (5.3.4) is convergent it follows that the infinite sum
term in the above is o(pz) as p —> 0 uniformly in h and k and using the expansions

$(x) = (Zn)-% (1-%x2) + o(xz), o(x) = % + (Zn‘)-%x + o(x2), as x —> 0, we find

2 2 2
(4.5.9) I(h,k;p) = ;—ﬂ-—h—%+2-3+%‘—+§-ﬂ(@—k%+%k+%+ o(h?)
2(2x) 2(2r)

+ 0(k2) + 0(02) s

as p, h, k—> 0 .

But it follows from the definitions (4.5.6) and (4.5.8) that
I(b,h) = J(h,-h;-b) + J(h,h;b) + J(-h,-h;b) + J(-h,h;-b) .

Hence from (4.5.9) we obtain

2

16,0) = 2+ 0m? + 00D ,

the desired result.

Some useful theorems can now be obtained.

Theorem 4.5.12¢: If r(t1) is integrable on (0,m), }\2 is finite and the spectral

density satisfies

f(A) = O(I/AZ) . as A —> oo,
then
Var{N(T)} ~ ¢T , as T —> oo,
where p
>‘2 —a2/2 00
c = e +2 [ g(tdr.
o

Proof: We first note that since r(t) is integrable, the spectral density £(1)

00 w
exists and since f()) = % [ cosit r(t)dt, £(0) is bounded by % f |r('r) |d't. Thus
o o
by Lemma 4.5.2 r(t), r'(t) and r"(1) all tend to zero as T —> w and are all square
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integrable.

Now, as T —> oo, we have

A
A(T) = 12 + Eg r2 - r'2 + o(rz) R
exp[-azr/(l+r)] = 1 - azr + a2(1+32/2) r2 + o(rz) ,
b(t) = §:~+ o(rz) + o(r'2) .
2
and
h(t) = Eil - ar;' + o(r2) + o(r'z) .
A A
2 2
Thus from Lemma 4.5.3
1b,h) = 2+ 0" + 0D + 0r'?y .
2
Now by (4.5.4) g(1) = e 2 {(2n)-1 exp[-azr/(l+r)] A(t) I(b,h) - lzlﬂz] and
hence
a? -a2 2 2 W2
(4.5.10) g(T) =-= r(t) e + 0(r) + 0(x*) + O(") .
7

But under our assumptions r(T), rZ(T), [r'('r)]2 and [r"('r)]2 are all inte-
grable on (0, ). Thus g(t) is integrable and, as noted earlier, the result
follows from dominated convergence.

With further assumptions we may refine these results. The assumptions are
perhaps somewhat less elegant, but are easy to check and hold in many situations

of practical interest.

Theorem 4.5.3: If 1r(71), Trz(r), 'r[r'('r)]2 and 'r[r"('r)]2 are all integrable on

(0,0), then

Var{N(T)} = d+cT+o(l), as T —> o ,
where
12 _ 2/2 fs'e)
c = —e a +2 [ g(vdr ,

0
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and
fe]
d = -2 [ 1 g(ddr.
o
Proof: We have
00 00
Var({N(T)} = d -¢ T = -2 [ g(t)dt+ [ 7 g(r)dr .
T T

By our assumptions and equation (4.5.10) we have that both g(t) and 1g(T) are
integrable. Hence the proof follows.
The numerical results which follow show that this asymptotic linearity is

obtained quite quickly in several cases.

4.6 Numerical Results.

1) ) = 1+ [P e""l

For this case the spectral density is

4

£ = —3 » A2>0.
(1232
Further r'(1) = -7 e-lTl, (7)) = (]Tl-l) e—lTl and A, = -r"(0) = 1. We note that

the assumptions of Theorem 4,5.3 are clearly satisfied. Using this covariance
function Var{N(T)} was numerically evaluated for the number of zero crossings
using an obvious modification of FKquation (4.3.2). The calculated values of
Var{N(T)} versus T together with the linear approximation given by Theorem 4.5.3

are plotted in Figure 4.6.1.

%0212

(ii) (1) = coskot e .
If o/lo is small (we shall use a/lo = ,15) this corresponds to a very good
approximation to the spectral density

2
(a-1)
1 % o
£QA) = —3e T3z A>0,
(210) 02

i.e. the process has a "Gaussian spectrum centered at the frequency lo."
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In this case

2 -%0212
r'(1t) = (-A_sinA 1-0"T cosk T) e
[s] o o]
r'(1) = '[-(12 + 02 - cawz)cosl T4+ 22 021 sin) 1] e-%c T
o o o o
Loty o a2, 2
lz = -r'(0) Ab +0

Again the assumptions of Theorem 4.5.3 are satisfied. The variance of the number
of zero crossings with ko = 21, 0 = (.15)2x is plotted in Figure 4.6.2 along with

the linear approximation.
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CHAPTER V
CERTAIN FUNCTIONALS OF NORMAL PROCESSES
5.1 Introduction.

As noted in Chapter I, when considering the performance quality or reliability"
of complex physical systems, it is sometimes convenient to define certain per-
formance "indices" or "measures" based on the characteristics of a stochastic pro-
cess associated with the system,

Suppose that we have such a stochastic process {X(t): t € [0,T]} and that for
good performance X(t) should never become "too large." Specifically, suppose there
is a known function a(t) such that for good performance X(t) should always be kept
less than a(t). Let h be a function which is zero for negative arguments and
strictly positive for positive arguments. Define the functional

1 T
(5.1.1) Z = T h{x(t)-a(t)] dt .
o
(We assume that the behavior of h(t),a(t) and X(t) is such that Z is defined.)
Now if with probability one X(t) has continuous sample functions, then the

event {Z = 0} is equivalent to the event {X(t) < a(t), t € [0,T]} and hence
P{z = 0} = P{X(t) < a(t), t e [0,T]} ,

and, for example, Chebyshev bounds on P{Z = 0} (using the mean and variance of Z)
give bounds on P(X(t) < a(t), t € [0,T]}. This latter quantity represents, of
course, the reliability or probability of a successful mission from this point of
view.

We wish to investigate forms of the function h which lead to tractable
Chebyshev bounds, i.e., tractable formulae for £{2} and Var{Z}. One particularly

amenable choice for h is
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x" , ifx>0

h(x) = hn(x) =
0 , ifx< 0.

We then write Zn for Z with the corresponding hn as integrand in (5.1.1). Note

that Zo is the proportion of time which the process spends above the curve a(t)
on the interval [0,T] and T-Z1 is the area which the process cuts off above the
curve on [0,T].

The Zn's may be called "exceedance measures" for the process as they describe,
in various ways, excursions of X(t) above a(t); for example Z° takes no account of
the size of such excursions whereas the remaining Zn's do. The first two Zn's, Zo
and Zl’ have been considered previously by Leadbetter (1963) and Cryer (1963) for

a normal, stationary process. The generalization of these results to include all

Zn is the purpose of this chapter.

5.2 The Mean and Variance of Zn.

We assume in the remainder of this chapter that {X(t): t € [0,T]} is a sta-
tionary normal process with zero mean and covariance function r(T1), assumed such
that, with probability one, the sample functions are everywhere éontinuous. Suf
ficient conditions for this latter property are given, for example, in Belayev
(1961). With no loss of generality we take r(0) = 1, and we assume [r(T)I <1la.e.

Let a(t) be a continuous function defined on [0,T] and define
Y () = h [K(t)-a(t)]

(No confusion with the Yﬁ(t) of previous chapters should result). We will some-

times use a(t) = a, for notational simplicity. Then Zn can be written

;I
(5.2.1) z = icj; Yn(t) at .

The mean value of Zn is (by Fubini's theorem)



€{z }
n

fl
3=

T
e/ ¥ (r)dt}
fs] .

|
3

T
£ E[Yn(t)1 dt .

By the definition of hn we find
00

ey ()} = J [x-a(t) ] o(x) dx

a
t

where ¢(x) is the standardized normal density function.

Hence we have

=

T o
(5.2.2) ez} = 3/ I [x-a(t)]™ ¢(x) dxdt .
. 0O a

t

Using the binomial expansion for [x-a(t)]n the integral of the form
®

! (x-c)n ¢(x)dx may be evaluated as a finite sum of incomplete gamma functioms.
c

This would give a useful form for computing purposes.

For the variance of Zn we first note that

, I T , I T
e [ [ Y (£) Y (s)dsdt} - =5 [ [ E[¥ (£)} E[Y (s)}dsdt
T o o o o :

(5.2.3) Var{zn}

|

, T T
= = I/ Cov[Y_(t), Yh(s)] dsdt .
T o o

Now

@
(5.2.4) EIYh(t) Yn(s)} = [ ] [x-a(t)]" [y-a(s)]” ¢(x,y;r) dxdy ,
3 8

where ¢(x,y;r) is the standardized bivariate normal density with correlation
coefficient r = r(t-s).
In evaluating the right-hand side of (5.2.4) the following expansion, which

may be found in Cramér (1946, p. 290) will be useful.

62



63
oo _j-1
s X

(1 yy o)
2 Gor el m oo

(5.2.5) o(x,y;r)

where |r| < 1 and Q(J)(x) denotes the j-th derivative of the normal distribution
function ¥(x).
Substitution of this expansion into (5.2.4) and formal interchange of

summation and integration (the justification will be given in Section 3) yields

-1

- e n (1) (4
(5.2.6) E&(Y_(t) ¥_(s)) (j a1 f (x-a.)" 077 (x)dx- f (y-a ) 3 (y)dy
a

t S
which holds at least for a.e.(t,s).

For j such that 1 < j < ntl, repeated integration by parts gives

nl

_nl _ayn-jtl
(n-3+1)1 i (x-a)

[s o]

;@) oW max = -t o (x)dx |
a

and if j > n+l

00 .
I xa)® o P@ax = 1™ IS Lt PO
a

Hence (5.2.6) may be written as

E_

n
SAORACUE NN i = ril i (x-2)" o(x)ax- f (7-2)"" o(z) ¢y
] t s
0o _ntj
(D y o)
+ (an? ?1 ot )1 (a,) ©-7(a) .

Note that the first term (j = 0) of the finite sum is

oo n S n
/ (x-a,) o(x)dx- [ (y-a))" #(y)dy

2 ag

which is just e{Yn(t)]-e(Yn(s)]
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Thus
2 -3 -3
COV[Yn(t) ’Yn(s)] = Z _' [(n‘j)l] f (x'a ) ¢(x)dx- f (y-a ) ‘b(y)dy
j=1 7 a a
. t 8
oo ntl . .
+ @2 5 I Q(J)(at) ¢(J)(as) .

o @

Substituting this inte (5.2.3) and again postponing the justification of the

interchange of summation and integration we obtain the final result

n
var(z) = Gh¥z —L— I f[rJu: YA (x-a,)"" Sotran] (7-a)" Jo(y)ayldsdt
: = Jl[(n-J)l] a a
(5.2.7)
® 1 I o ) ()
+ jfl o) £ £ T (t-s) 077(a) O (as)dsdt}

where it is understood that the first summation does not appear if n = O.

For the important special case when a(t) = a, a constant, formulae (5.2.2) and

(5.2.7) reduce to

a
ez ) [ (x-a)" ¢(x)dx ,
a

(5.2.8)

@
S x-a)"Jeyax)®

Var{z } = 2(nl) {z -2 / (I'I)rj(T)dT
n T Cja1 gt [e-11? T

f

o (i) .
+ = IEL——L-)l— I (l-l)rn+3(1)d1} ,
. (n+3)! T
j=1 o
where use is made of the fact that for "any” even function £(7)
TT T
J [ f(t-8)dsdt = 2 [ (T-t)f(1)dt .
o o
These results have been announced without proof in Leadbetter and Cryer (1965c).

As noted in the introduction to this chapter, for any fixed n we may obtain

an upper bound to the probability that the process will never exceed a given level



or curve a(t) in the time period [0,T]. Specifically we have
(5.2.9) P(X(t) < a(t), t e [0,1]) = P(z_=0} < 1+ [&(z )1°Nar{z )™

using a one-sided Chebyshev inequality.

5.3 Convergence Questions.

To justify the interchange of summation and integration in both (5.2.6) and
(5.2.7) we need to look at the properties of the functions Q(J)(x). It is well

known that these derivatives are related to the Hermite polynomials Hj(x),

(5.3.1) 02 B 2% = (nd oo

and thus known properties of the Hermite polynomials can be used. From

Erdélyi (1953) we have

2
(5.3.2) e 00| < 12323k

where k is an (absolute) constant.
Thus

. 2
(5.3.3) 163y < KIG-1)17% &

where K is a constant.

To justify (5.2.6) it is sufficient to show that the series

oo j-1 o 00 <
r
3.0 = E s et PP & s Gra)™ 0P jay
j=]_ J a . . a X
et s

is convergent.

By (5.3.3) we have that

[s o] . 0o - 2
[ a-a)® oD olax ¢ KIG-DITES (xma)® ™™ &
a - . a

t t

< KIU-DIF
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Thus the j-th term of (5.3.4) is less than K1|r(t s)}j and thus (5.3.4) con-
verges at least for almost every (s,t) € [0,T] x [0 T] This is all we need since
we next want to integrate over s and t.

To justify (5.2.7) it is sufficient to establish the convergence of

I |r(t-s)|“+3|¢(3)( 0P ) ldsde .

(5.3.5)
(j+n)r 5o

From the theory of characteristic functions (for example) we have

@, _ (pitalt
N = Ty 71

00 e-%tz—itx

dt
-0

_iyd-1 o o 42
Siil ;¢ LI Bto-itx dt .

Therefore

r&i
Using Stirling's formula again we find that

|¢(j)(at)®(j)(as) l
K
(GFo)1 S

/jn+3/2

where K is a constant.

TT .
Further [ [ |r(t-s)| ntj dsdt g.T
oo

Thus for any fixed n = 0,1,2,..., the series (5.3.5) converges as required.

5.4 Asymptotic Formulae and Numerical Computations.

In developing some limiting results as T —> oo we will restrict attention
to the special case where a(t) = a, a constant. Hence we are concerned with
Equations (5.2.8). We note in particular that S[Z } does not depend on T.

Suppose that the covariance function r(7) tends to zero as ITI —> oo and is

in fact (absolutely)integrable on (0,00). Then rj(T) for any pos1tive integer
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j is also integrable and by dominated convergence
T T 3 oo .
(5.4.1) [ (I-E)rJ(T)dT'—f> [ i(nyar = a;» say, as T —> o0.
o o

Hence using dominated convergence together with the convergence results of

Section 3 we have
a
[/ (x-a)*Jo(x)ax1?

2, 5 .a © (3912
(5.4.2) T Var{z ] — 2)7{ = a + 3z [0°°C )17, '
. S sileen)? I @D e

Cute

ol

For a stationary normal Markov process, i.e. r(7) for some positive

[
-t

Q, we obtain aj = (aj)-1 so that (5.4.2) becomes for n

@ (i) 2
(5.4.3) T Var(z,) —> 21-0(a)]? + » 18- Aa

a =1 (j+1)(j+1)!} :

For non-integrable covariance functions the results can be very simple in-

deed. For example if,

(1) ~A/l|1] ,

then
T T 1 T T
[ -Pr(ndr = (J + [)HA-Pr(v)dr
o o 1
L T
~ f(l-f)r(r)df + AlogT
o
~ Alog T , as T —> oo.
I o
Further for m> 1, [ (l-iarm(f)dr converges to a finite limit as T —> 00 and so
o

the first term of the variance formula of (5.2.8) dominates and

(5.4.4)

00 n-1 2
Var{Zn} — 2nA[f (x-a) ~o(x)dx]

T
logT a

To obtain numerical results for the various intergals and infinite series

occuring in this chapter the following remarks can be useful.
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o
Integrals of the form f (x-a)m¢(x)dx where m is an integer appear both in
a

€{Zn} and in the finite sum involved in Var[Zn}. As noted previously these may
evaluated using the binomial theorem and incomplete gamma functions, viz.

® m . 1 . 2
(5.6.5) [ (a)dax = xF z (a2l pdle
a i=0

(v}
where I'(m,x) = [ tm-1 e"t dt is an incomplete gamma function. These functions
x

are extensively tabled in Pearson (1957). The recurrence relation

(5.4.6) r(mtl,x) = ml(m,x) + xe ¥

may also be of use. Unfortunately, however, the first argument of T in (5.4.5)

increases by half integers so that two such recurrence equations and two initial

values are necessary to obtain all the terms in the sum. The initial values may

easily be found using only standard normal distribution tables since

207 [1-0(x) ]

I, kx’)

and

(Zn)%¢(x) .

r(l,%xz)

In approximating series of the form

[0 o) .
5 e. 1689 )72
j=1
it is useful to note
(5.4.7) ™Dy + 0™V + ™) = 0 m>1

which may be derived by partial integration or from known results for Hermite
polynomials.

As an example, for the Markov case, r(t) = e-alTI, and particular values of
n, a, and o (@ is only a scale parameter on the time axis) the following numerical

results were obtained.



- Table 5.4.1 Numerical Results

a=1, =2, r(1) = e

n &{ Zn}
0 .1587
1 .0833
2 .0641
3 .0912

-alt]
Var{ Zn} Chebyshev bound
.04721 .65
.02850 .80
.04799 .92
.13270 .94

The best bound is obtained for n = 0 and we have

P(X(t) <1, 0<t< 2/d) < .65
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CHAPTER VI

TWO-SIDED BARRIERS

6.1 Introduction.

As noted in Chapter I most of the results of Chapters II - V can be extended
to the case of two-sided barriers; that is, where we are interested in excursions
outside both a (positive) level a and a (negative) level b. The mean of the total
number of crossings of the level a éhd the level b is of course trivial to obtain;
the results will be stated in Section 2. The derivation of the variance or second
moment of the number of such crossings reduces to the calculation of the covariance
between the number of crossings of the level a with the number of crossings of the
level b. The methods of Chapter IV may be adapted to obtain this and a sketch of
the proof is given in Section 3. A heuristic derivation of this covariance was
given previously by Miller and Freund (1956). Finally the extenmsion of the re-
sults on Zn exceedance measures (as given in Chapter V) is discussed in Section 4.
Two extensions are considered. (cf. Leadbetter (1963)).

Let N? and Nb denote, respectively, the number of crossings of the level a
and the level b for 0 < t < 1 and let Na’b be the number of crossings of either
level, i.e., Na’b =N + Nb. Then Na’b is a two-sided barrier version of the
number of crossings of a single level. In some contexts one might want to con-
sider, say, the number of upcrossings of the level a plus the number of downcross-
ings of the level b. Further we could obviously consider crossings of two curves
a(t), b(t). To conserve notation we will give explicit results only for certain

cases. The corresponding formulae for other situations will be similar.

6.2 Mean Number of Crossings.

Suppose X(t) is a non-stationary normal process with mean &[X(t)}= m(t) and
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covariance Cov[X(t),X(s)] = I'(t,s). Then with the notation of Theorem 3.3.1 we

have immediately
Theorem 6.2.1: If the conditions of Theorem 3.3.1 hold, then

(6.2.1) e ®) = e} + e®)

where &(N?} and S{Nb} are given by (3.3.1) with m(t) replaced by m(t)-a and by

m(t)-b, respectively.
Corollary 6.2.1: If X(t) is stationary with mean zero and covariance r(7), then

2
(6.2.2) e = 20y /r(o))® o7 /12O

6.3 The Variance.

To obtain the variance or mean square of Na’b =¥+ Nb clearly we need only
derive a formula for S{NaNb}, i.e., the (uncorrected) covariance between the
number of crossings of the level a and the number of crossings of the level b.

In order to have a direct analogy with the derivations of Chapter IV we consider
only upcrossings and write Ni’b = Nﬁ + N: in an obvious notation. The proof of

the following main result will be given by means of several lemmas.

Theorem 6.3.1: Under the conditions of Theorem 4.2.1 we have the finite moment

b 1100
(6.3.1) e N} = [[[ [ =y, (a,b,x,y)dxdy dsdt, (a #Db),
co0oo0o O

where pT(u,v,x,y) is the joint density of X(0), X(t), X'(0), X'(1) as before.

Throughout the following lemmas Ni and N: will denote the number of upcross-
ings of the levels a and b, respectively, by the linear process Yﬁ(t) defined in

Chapters II and III. We use notation from Chapter IV without further comment.
Iemma 6.3.1: For a # b we have

(6.3.2) Nz NZ = P+Q+ lim [ [ 8, [¥,(e)-a] & [¥ (s)-b] ofY!(t)] o[Y] (s)]dsdt
m>>00 Sn
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and

633 [ [ 8,[%,(6)-a] £,[¥ ()b o[T(0)] a[T()] < 2%

n

where P denotes the number of intervals (kZ-n, (k+1)2-n) of (0,1) which contain
both an upcrossing of a and an upcrossing of b by Yn(t) and Q denotes the numbers
of such subintervals which contain an upcrossing of a and such that there is an

upcrossing of b in an adjacent such interval.

Proof: Write Ok = k2 ™. Then as in the proof of Lemmas 4.2.1 and 4.2.2 we have

A b 2".1 %41 A1
NN = m1_n>n°o kfo ék Bm[Yn(t)-a] U[Yr'l(t)]dt ék Bm[Yn(s)-b] c[YI'l(s)]ds

%2 %1l %2 Y2 G
+ lim s IS f + f ) 18, [Y (t)-a] & [Y (s)-b]
>0 k=0 q O,y Gy %

G[Y;(t)] G[Y;(s)]dsdt

+ lim [ [ Bm[Yn(t)-a] am[Yn(s)-b] c[Yr'l(t)] c[Yt'l(s)]dsdt .

m>00 S
n

As in previous work we see that the first term on the right-hand side is just P.
Similarly the second term is Q. The inequality (6.3.3) is analogous to that of
Lemma 4.2.2.

To show that &{P} tends to zero as n —> ® we appeal to the theory of
"streams of events" or "point processes" as given, for example, in the book of
A. Y. Khintchine (1960). In our particular case we say that an event takes place
at time 7 if X(t) has either an upcrossing of the level a or an upcrossing of the
level b at time 7. A stream is called stationary if for any set of non-negative
integers Mys Myseoe, M and any set of disjoint intervals (Ti,T{), i=1,...,k
the joint probability of m, events in the interval (Ti+T,'T;+T) is the same for

every T. For a stationary stream let ®w(t) be the probability of at least two
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events in an interval of length T. Then the stream is called orderly (or regular)
if w(t) = o(1) as T —> 0. Sufficient conditions for a stationary stream to be
orderly are that the mean number of events per unit time be finite and that there
be zero probability of the simultaneous occurrence of two events anywhere in the
interval (0,1). As pointed out by Leadbetter (1966b), this follows from an ex-
tension of a lemma of Dobrushin given by Volkonski (1960).

For the particular stream under consideration, the simultaneous occurrence of
two events is impossible (with probability one) since a # b and the sample funct-
ions are continuous (recall that from our definition, points of inflection are
counted as only one crossing). Further since 12 < oo the mean number of events
per unit time is finite. To show that the stream is stationary we write N(Ti,Ti)
for the number of upcrossings of a or b in (Ti,T{). By dividing each interval
(Ti,T{) into 2" + 1 equal parts we may define a linear process Yn(t) on each and
thus obtain Nn(Ti,Ti) the number of upcrossings of a or b by Yn(t) in (Ti,Ti).
From Lemma 2.2.2 we have that, with probability one, Nn(ri,f') —_ N(Ti’Ti) as
n —> o (i=1,2,...k). Thus the joint distribution converges, i.e. we have

= 1= = 1 1 - i=
P{N(Ti+T, Ti+T) m, i 1,...k} lim P{Nn(ri+T, Ti+T) m, i 1,...k}
n—>w

Now the probability on the right-hand side can be written as a certain integral
of a finite-dimentional normal density. The range of integration does not depend
on T and, since the process X(t) is stationary, the density does not depend on T.
Hence the left-hand side does not depend on T and the stream of events is station-
ary.

Thus we may state that the probability of two or more events in an interval
of length 270 g o(Z_n) as n—> m.

Now consider the original problem. Assume with no loss of generality that

b < a. Then



&{ P}
Therefore

&{p)
Further

€{Q}
Hence

€{qQl}

il

N

2"-1
T P(X(k2™™) < b < a < X((k+1)27™)}
k=0
21 . i
Y~  P{two events occur in (k2 , (k+1)2 )}
k=0

2" P(two events occur in (k2-n, (k+1)2"™)}

o(l) , asn —> o0 .

o(l) , asn—> o .

22

T PX(k27™) < b < X((H1)27™) < a < X((+2)27™))
k=0

2.2

T OP(X(2™™) < b < a < X((k+2)2™))
k=0

o(l) , also.

Thus using inequality (6.3.3), dominated convergence and Fubini's theorem we

have

Lemma 6.3.2:

eer))

As n —> o

im [ [ EIbm[Yn(t)-a] Sm[Yh(s)-b] G[Y;(t)] U[Y;(s)]}dsdt

m>00 S
n

+ o(l) .
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Proof of the Theorem: Exactly as in Lemma 4.2.6 we now find
i - - 1 t
11m°° fs J els_[¥ (t)-a] &_[¥ (s)-b] o[¥!(t)] c[Yn(s)]]dsdt

(6.3.6)

t’s(a,b,x,y)dxdydsdt .

where pn,t,s(u,v,x,y) is the joint normal demsity for Yn(t)’ Yn(s), Yé(t), Y;(s)
as usual.

To show that we may take the limit as n —> oo under the integrations we pro-
ceed as in Lemmas 4.2.7 - 10 (we need only replace (a,a) by (a,b), essentially).
In this way we find

® ®

1tim [ [ [ [ =y pn’t’s(a,b,x,y)dxdydsdt

o> S o o
n

11 o ©
= ff I f Xy pt_s(a,bsx9}’)dxdyd3dt
00 0 o

and retracing steps (6.3.6), (6.3.5), and (6.3.4) completes the proof.

6.4 Exceedance Measures for Two-sided Barriers.

In Chapter V we considered certain random variables Zn which in a sense
measured the extent to which the process X(t) exceeded the barrier a(t). In
many contexts it is perhaps more realistic to consider exceedances both above a(t)
and below b(t), say - that is, a two-sided barrier.

We assume, as in Chapter V, that X(t) is a stationary normal process with
mean zero, covariance function r(t), normalized so that r(0) = 1. We further
assume that Ir(T)I < 1 a.e. and that, with probability one, X(t) has everywhere
continuous sample functions.

To simplify many of the formulae we further restrict attention to the case

where a(t) = a, a constant, and b(t) = -a. The more general situation can be
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handled in the same manner but the formulae do not simplify.

For each non-negative integer n we now define

(x-a)" ifx>a
gn(x) = (-a-x)n ifx< -a
0 otherwise
and then let
1 T
(6.4.1) W= Ec{ gn[X(t)]dt .

The quantity Wo is the proportion of time for which the process is either
above a or below -a and TW1 is the total area which X(t) cuts off above a plus the
area below -a.

From symmetry considerations we immediately have

& wn} 2 & zn}

(6.4.2)

a
2 [ (x-a)® o(x)dx
a

To obtain the variance of Wn we need now consider Cov(gn[X(t)], gn[X(S)]}.

We have

€lg [X(t)] gn[X(S)]]

oo @ n a -a (o o] n n -a -a n n
f [ (x-a) (y-a)" +2 [ [ (x-a) (-a-y) + [ [ (-a-x) (-a-y)']
a4 a -0 a -00 -00

¢(x,y;r)dxdy

o @ n 00 n n
2 [ (x-a)"(y-a)" #(x,y;r)dxdy + [ [ (x-a) (y-a) ¢(x,y;-r)dxdy]
a a a a

]

where, as previously, ¢(x,y;r) is the standardized bivariate normal density with

correlation coefficient r. In our case r = r(t-s).
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Hence we can use the expansion (5.2.5) again but this time half of the result-
ing terms will cancel and we are led to the following result.

If n is even (the first sum does not appear if n = 0)

Var(v ]} = o v 2 f (1-%)r2jdr

T i1 eptime2nil?
(6.4.3)
© 152D 31%2 T 1 ne2j
+ j?l I?E;EE§711_ £ (ldi)r dt}

and if n is odd (the first sum does not appear if n = 1)

@ n-2j 2
2 (a-1)/2 [J (x-a) TTe(x)dx]
a

Var(w} = s&&ll (5 — [ a-HrHar
" T =1 epilmzpt?? o T
(6.4.4)
© [ (2§-1), <42 T .
o™ (a1 I, mH2j-1

In defining gn(x) as we have we are treating positive and negative excursions
outside the bounds a,-a as being equally "bad" from a performance point-of-view.
However in other situations it may be that negative excursions can in fact com-

pensate for positive excursions. In such a case we can define gﬁ(x), say, as

(x-a)n ifx>a ,
gk(x) = -(-a-x)" ifxg -a,
0 otherwise .
We then let
1 T
wr = -T-cf’ gk[X(t)]at .
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The quantities W: and W¥ may be easily interpreted. Wg represents the dif-

1
ference between the proportion of time during (0,T) for which X(t) > a and the
proportion of time for which X(t) < -a. Similarly TW? is the difference between

the area which the process cuts off above a and the corresponding area below -a.

By the definition of gz(x) we clearly have
(6.4.5) gws} = 0,

and proceeding exactly as for gn(x) we obtain the following expression for the
variance.

If n is even (the first sum does not appear if n = 0)

00
2 nyp U a2 ecax?

8-(%)—{ x -2 / (1-;%)r2j-1d'r
j=1 (23-1)][(n-23+1)l] o

Var{Wﬁ]

(6.4.6)

(23-1) .
[o @)1° Ty n2j-1
@ri-n1 £ 1-pr

+ z
i=1

dt)}

and if n is odd

L (-2 g (xyax 2
2 (ntl)/2 T
8S_L{ PN - f (1__)1_2_] 1
j=1 (2j-1)l[(n-2j+1)l] o

Vhr{W:}
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APPENDIX

Lemma A.1l: Let X(t) be a stationary normal process with quadratic mean derivative

X'(t) existing and with spectral distribution function F(}A), i.e.,

o
cov[X(t),X(t+1)] = [ cosit dF(Q) .
)

Let t.,t be distinct time points. Then if F(A) has a continuous component

1272°°° k
. . . . . _ ' ' .
the joint distribution of X (X(tl), X(tz),..., X(tn), X (tl)’ X (tz),..., X (tn))

.t

is non-singular.
Proof: See Cramér and Leadbetter (1965).

Lemma A.2: If x = (xl,...,xn), y= (yn+1,...,ym) are real row vectors and A is

an m X m symmetric positive definite matrix, then

. -1 -1
min[(x, DA "xD'] = yA; '
A 4 \
where A, is the m-n x m-n matrix obtained by partitioning A = . corre-
3 A) Ag |
sponding to the dimensions of x and y.
- F1 B
Proof: Let A = be partitioned similarly as Pt P ) Then
2°3
Srxpa eyl = 22.x' + 2Py
2 % 1= 2L
Setting this equal to the zero vector and solving for x' yields
-1
[ I, t
x PRy
d2 -1 !
We note that EEEET [(x,7)A "(x,9)] = 2P2 which is positive definite and thus en-

sures that we have found a minimum.
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The minimum value is

-1
_pt '
¥(P4-P3P P))Y

¥ which gives the final result since P3-P5P11P2 = A;l; see Anderson (1958), for

example.

]

Lemma A.3: For |p| < 1

[}

00 00
[T xy exp[-%(x2+20xy+y2)]dxdy (l-pz)'l[lwﬁcot'%ﬁl s
(o] [o]

where
A = p(l-pz)-% and 0 < cot_lAg_ T
® o ’ 2
Proof: Let I(0) = [ [ exp[-3(x"+2cosfxy+y”)]dxdy .
o o

| If we make the transformation x = wtv, y = u-v and then change to polar coordinates

we find

I(6) = 6 csc 6 .

Differentiating both sides with respect to 6 yields

00 00 9 9
sing [ [ xv exp[-3(x"+2cosfxy+y )ldxdy = cscB(1-6coth)
o o
or
o @ 2 2 2
[ | xy exp[-5(x"+2cosOxyty ) ]dxdy = csc 6(1-6cotd) .
o o

Now put cosf = p. Using (for principal values)

coslp = eseM-p?) ] = cot”Mp(1-p2) 7]

we obtain the desired result.




